SwePub
Sök i SwePub databas

  Utökad sökning

Träfflista för sökning "WFRF:(Schmidt Linnéa) srt2:(2011-2014)"

Sökning: WFRF:(Schmidt Linnéa) > (2011-2014)

  • Resultat 1-6 av 6
Sortera/gruppera träfflistan
   
NumreringReferensOmslagsbildHitta
1.
  • Abenius, Tobias, 1979, et al. (författare)
  • System-scale network modeling of cancer using EPoC
  • 2012
  • Ingår i: Advances in Experimental Medicine and Biology. - New York, NY : Springer New York. - 0065-2598. - 9781441972095 ; 736:5, s. 617-643
  • Tidskriftsartikel (refereegranskat)abstract
    • One of the central problems of cancer systems biology is to understand the complex molecular changes of cancerous cells and tissues, and use this understanding to support the development of new targeted therapies. EPoC (Endogenous Perturbation analysis of Cancer) is a network modeling technique for tumor molecular profiles. EPoC models are constructed from combined copy number aberration (CNA) and mRNA data and aim to (1) identify genes whose copy number aberrations significantly affect target mRNA expression and (2) generate markers for long- and short-term survival of cancer patients. Models are constructed by a combination of regression and bootstrapping methods. Prognostic scores are obtained from a singular value decomposition of the networks. We have previously analyzed the performance of EPoC using glioblastoma data from The Cancer Genome Atlas (TCGA) consortium, and have shown that resulting network models contain both known and candidate disease-relevant genes as network hubs, as well as uncover predictors of patient survival. Here, we give a practical guide how to perform EPoC modeling in practice using R, and present a set of alternative modeling frameworks.
  •  
2.
  • Gerlee, Philip, 1980, et al. (författare)
  • Searching for Synergies: Matrix Algebraic Approaches for Efficient Pair Screening
  • 2013
  • Ingår i: PLoS ONE. - : Public Library of Science (PLoS). - 1932-6203. ; 8:7
  • Tidskriftsartikel (refereegranskat)abstract
    • Functionally interacting perturbations, such as synergistic drugs pairs or synthetic lethal gene pairs, are of key interest in both pharmacology and functional genomics. However, to find such pairs by traditional screening methods is both time consuming and costly. We present a novel computational-experimental framework for efficient identification of synergistic target pairs, applicable for screening of systems with sizes on the order of current drug, small RNA or SGA (Synthetic Genetic Array) libraries (>1000 targets). This framework exploits the fact that the response of a drug pair in a given system, or a pair of genes' propensity to interact functionally, can be partly predicted by computational means from (i) a small set of experimentally determined target pairs, and (ii) pre-existing data (e.g. gene ontology, PPI) on the similarities between targets. Predictions are obtained by a novel matrix algebraic technique, based on cyclical projections onto convex sets. We demonstrate the efficiency of the proposed method using drug-drug interaction data from seven cancer cell lines and gene-gene interaction data from yeast SGA screens. Our protocol increases the rate of synergism discovery significantly over traditional screening, by up to 7-fold. Our method is easy to implement and could be applied to accelerate pair screening for both animal and microbial systems.
  •  
3.
  • Hansson, Caroline, 1981, et al. (författare)
  • Influence of ghrelin on the central serotonergic signaling system in mice
  • 2014
  • Ingår i: Neuropharmacology. - : Elsevier BV. - 0028-3908. ; 79, s. 498-505
  • Tidskriftsartikel (refereegranskat)abstract
    • The central ghrelin signaling system engages key pathways of importance for feeding control, recently shown to include those engaged in anxiety-like behavior in rodents. Here we sought to determine whether ghrelin impacts on the central serotonin system, which has an important role in anxiety. We focused on two brain areas, the amygdala (of importance for the mediation of fear and anxiety) and the dorsal raphe (i.e. the site of origin of major afferent serotonin pathways, including those that project to the amygdala). In these brain areas, we measured serotonergic turnover (using HPLC) and the mRNA expression of a number of serotonin-related genes (using real-time PCR). We found that acute central administration of ghrelin to mice increased the serotonergic turnover in the amygdala. It also increased the mRNA expression of a number of serotonin receptors, both in the amygdala and in the dorsal raphe. Studies in ghrelin receptor (GHS-R1A) knock-out mice showed a decreased mRNA expression of serotonergic receptors in both the amygdala and the dorsal raphe, relative to their wild-type littermates. We conclude that the central serotonin system is a target for ghrelin, providing a candidate neurochemical substrate of importance for ghrelin's effects on mood. © 2013 The Authors. Published by Elsevier Ltd. All rights reserved.
  •  
4.
  • Jörnsten, Rebecka, 1971, et al. (författare)
  • Network modeling of the transcriptional effects of copy number aberrations in glioblastoma
  • 2011
  • Ingår i: Molecular Systems Biology. - : EMBO. - 1744-4292. ; 7
  • Tidskriftsartikel (refereegranskat)abstract
    • DNA copy number aberrations (CNAs) are a hallmark of cancer genomes. However, little is known about how such changes affect global gene expression. We develop a modeling framework, EPoC (Endogenous Perturbation analysis of Cancer), to (1) detect disease-driving CNAs and their effect on target mRNA expression, and to (2) stratify cancer patients into long- and short-term survivors. Our method constructs causal network models of gene expression by combining genome-wide DNA- and RNA-level data. Prognostic scores are obtained from a singular value decomposition of the networks. By applying EPoC to glioblastoma data from The Cancer Genome Atlas consortium, we demonstrate that the resulting network models contain known disease-relevant hub genes, reveal interesting candidate hubs, and uncover predictors of patient survival. Targeted validations in four glioblastoma cell lines support selected predictions, and implicate the p53-interacting protein Necdin in suppressing glioblastoma cell growth. We conclude that large-scale network modeling of the effects of CNAs on gene expression may provide insights into the biology of human cancer. Free software in MATLAB and R is provided.
  •  
5.
  • Karlsson-Lindahl, Linda, 1972, et al. (författare)
  • Heparanase affects food intake and regulates energy balance in mice.
  • 2012
  • Ingår i: PloS one. - San Francisco : Public Library of Science (PLoS). - 1932-6203. ; 7:3
  • Tidskriftsartikel (refereegranskat)abstract
    • Mutation of the melanocortin-receptor 4 (MC4R) is the most frequent cause of severe obesity in humans. Binding of agouti-related peptide (AgRP) to MC4R involves the co-receptor syndecan-3, a heparan sulfate proteoglycan. The proteoglycan can be structurally modified by the enzyme heparanase. Here we tested the hypothesis that heparanase plays a role in food intake behaviour and energy balance regulation by analysing body weight, body composition and food intake in genetically modified mice that either lack or overexpress heparanase. We also assessed food intake and body weight following acute central intracerebroventricular administration of heparanase; such treatment reduced food intake in wildtype mice, an effect that was abolished in mice lacking MC4R. By contrast, heparanase knockout mice on a high-fat diet showed increased food intake and maturity-onset obesity, with up to a 40% increase in body fat. Mice overexpressing heparanase displayed essentially the opposite phenotypes, with a reduced fat mass. These results implicate heparanase in energy balance control via the central melanocortin system. Our data indicate that heparanase acts as a negative modulator of AgRP signaling at MC4R, through cleavage of heparan sulfate chains presumably linked to syndecan-3.
  •  
6.
  • Wee, Shimei, et al. (författare)
  • Selective Calcium Sensitivity in Immature Glioma Cancer Stem Cells
  • 2014
  • Ingår i: PLOS ONE. - : Public Library of Science (PLoS). - 1932-6203. ; 9:12
  • Tidskriftsartikel (refereegranskat)abstract
    • Tumor-initiating cells are a subpopulation in aggressive cancers that exhibit traits shared with stem cells, including the ability to self-renew and differentiate, commonly referred to as stemness. In addition, such cells are resistant to chemo- and radiation therapy posing a therapeutic challenge. To uncover stemness-associated functions in glioma-initiating cells (GICs), transcriptome profiles were compared to neural stem cells (NSCs) and gene ontology analysis identified an enrichment of Ca2+ signaling genes in NSCs and the more stem-like (NSC-proximal) GICs. Functional analysis in a set of different GIC lines regarding sensitivity to disturbed homeostasis using A23187 and Thapsigargin, revealed that NSC-proximal GICs were more sensitive, corroborating the transcriptome data. Furthermore, Ca2+ drug sensitivity was reduced in GICs after differentiation, with most potent effect in the NSC-proximal GIC, supporting a stemness-associated Ca2+ sensitivity. NSCs and the NSC-proximal GIC line expressed a larger number of ion channels permeable to potassium, sodium and Ca2+. Conversely, a higher number of and higher expression levels of Ca2+ binding genes that may buffer Ca2+, were expressed in NSC-distal GICs. In particular, expression of the AMPA glutamate receptor subunit GRIA1, was found to associate with Ca2+ sensitive NSC-proximal GICs, and decreased as GICs differentiated along with reduced Ca2+ drug sensitivity. The correlation between high expression of Ca2+ channels (such as GRIA1) and sensitivity to Ca2+ drugs was confirmed in an additional nine novel GIC lines. Calcium drug sensitivity also correlated with expression of the NSC markers nestin (NES) and FABP7 (BLBP, brain lipid-binding protein) in this extended analysis. In summary, NSC-associated NES+/FABP7(+)/GRIA1(+) GICs were selectively sensitive to disturbances in Ca2+ homeostasis, providing a potential target mechanism for eradication of an immature population of malignant cells.
  •  
Skapa referenser, mejla, bekava och länka
  • Resultat 1-6 av 6
Typ av publikation
tidskriftsartikel (6)
Typ av innehåll
refereegranskat (6)
Författare/redaktör
Schmidt, Linnéa, 198 ... (5)
Jörnsten, Rebecka, 1 ... (3)
Kling, Teresia, 1985 (3)
Nelander, Sven, 1974 (3)
Abenius, Tobias, 197 ... (2)
Dickson, Suzanne L., ... (2)
visa fler...
Taube, Magdalena (2)
Egecioglu, Emil, 197 ... (2)
Hansson, Caroline, 1 ... (2)
Karlsson-Lindahl, Li ... (2)
Johansson, Erik (1)
Sánchez, José, 1979 (1)
Li, Jin-Ping (1)
Lindahl, Ulf (1)
Nilsson, Björn (1)
Westermark, Bengt (1)
Vlodavsky, Israel (1)
Nissbrandt, Hans, 19 ... (1)
Sander, Chris (1)
Funa, Keiko, 1949 (1)
Nelander, Sven (1)
Gennemark, Peter, 19 ... (1)
Alvarez-Crespo, Mayt ... (1)
Skibicka, Karolina P (1)
Gerlee, Philip, 1980 (1)
Jansson, John-Olov, ... (1)
Marinescu, Voichita ... (1)
Forsberg-Nilsson, Ka ... (1)
Uhrbom, Lene (1)
Haage, David (1)
Hermansson, Annika (1)
Linnarsson, Sten (1)
Andang, Michael (1)
Dirks, Peter (1)
Schmidt, Linnea (1)
Segerman, Anna (1)
Tan, Ying-xia (1)
Nordlander, Bodil, 1 ... (1)
Monsefi, Naser (1)
Nordling, Torbjorn E ... (1)
Lindahl, Linda, 1972 (1)
Admyre, Therese (1)
Wee, Shimei (1)
Niklasson, Maria (1)
visa färre...
Lärosäte
Göteborgs universitet (5)
Uppsala universitet (4)
Chalmers tekniska högskola (3)
Umeå universitet (1)
Kungliga Tekniska Högskolan (1)
Lunds universitet (1)
visa fler...
Karolinska Institutet (1)
visa färre...
Språk
Engelska (6)
Forskningsämne (UKÄ/SCB)
Medicin och hälsovetenskap (6)
Naturvetenskap (2)

År

Kungliga biblioteket hanterar dina personuppgifter i enlighet med EU:s dataskyddsförordning (2018), GDPR. Läs mer om hur det funkar här.
Så här hanterar KB dina uppgifter vid användning av denna tjänst.

 
pil uppåt Stäng

Kopiera och spara länken för att återkomma till aktuell vy