SwePub
Sök i SwePub databas

  Utökad sökning

Träfflista för sökning "WFRF:(Schymanski Emma L) srt2:(2020-2024)"

Sökning: WFRF:(Schymanski Emma L) > (2020-2024)

  • Resultat 1-6 av 6
Sortera/gruppera träfflistan
   
NumreringReferensOmslagsbildHitta
1.
  • Mohammed Taha, Hiba, et al. (författare)
  • The NORMAN Suspect List Exchange (NORMAN-SLE) : facilitating European and worldwide collaboration on suspect screening in high resolution mass spectrometry
  • 2022
  • Ingår i: Environmental Sciences Europe. - : Springer. - 2190-4707 .- 2190-4715. ; 34:1
  • Tidskriftsartikel (refereegranskat)abstract
    • Background: The NORMAN Association (https://www.norman-network.com/) initiated the NORMAN Suspect List Exchange (NORMAN-SLE; https://www.norman-network.com/nds/SLE/) in 2015, following the NORMAN collaborative trial on non-target screening of environmental water samples by mass spectrometry. Since then, this exchange of information on chemicals that are expected to occur in the environment, along with the accompanying expert knowledge and references, has become a valuable knowledge base for “suspect screening” lists. The NORMAN-SLE now serves as a FAIR (Findable, Accessible, Interoperable, Reusable) chemical information resource worldwide.Results: The NORMAN-SLE contains 99 separate suspect list collections (as of May 2022) from over 70 contributors around the world, totalling over 100,000 unique substances. The substance classes include per- and polyfluoroalkyl substances (PFAS), pharmaceuticals, pesticides, natural toxins, high production volume substances covered under the European REACH regulation (EC: 1272/2008), priority contaminants of emerging concern (CECs) and regulatory lists from NORMAN partners. Several lists focus on transformation products (TPs) and complex features detected in the environment with various levels of provenance and structural information. Each list is available for separate download. The merged, curated collection is also available as the NORMAN Substance Database (NORMAN SusDat). Both the NORMAN-SLE and NORMAN SusDat are integrated within the NORMAN Database System (NDS). The individual NORMAN-SLE lists receive digital object identifiers (DOIs) and traceable versioning via a Zenodo community (https://zenodo.org/communities/norman-sle), with a total of > 40,000 unique views, > 50,000 unique downloads and 40 citations (May 2022). NORMAN-SLE content is progressively integrated into large open chemical databases such as PubChem (https://pubchem.ncbi.nlm.nih.gov/) and the US EPA’s CompTox Chemicals Dashboard (https://comptox.epa.gov/dashboard/), enabling further access to these lists, along with the additional functionality and calculated properties these resources offer. PubChem has also integrated significant annotation content from the NORMAN-SLE, including a classification browser (https://pubchem.ncbi.nlm.nih.gov/classification/#hid=101).Conclusions: The NORMAN-SLE offers a specialized service for hosting suspect screening lists of relevance for the environmental community in an open, FAIR manner that allows integration with other major chemical resources. These efforts foster the exchange of information between scientists and regulators, supporting the paradigm shift to the “one substance, one assessment” approach. New submissions are welcome via the contacts provided on the NORMAN-SLE website (https://www.norman-network.com/nds/SLE/).
  •  
2.
  • Martens, Marvin, et al. (författare)
  • ELIXIR and Toxicology : a community in development
  • 2021
  • Ingår i: F1000 Research. - : F1000 Research Ltd. - 2046-1402. ; 10, s. 1129-1129
  • Tidskriftsartikel (refereegranskat)abstract
    • Toxicology has been an active research field for many decades, with academic, industrial and government involvement. Modern omics and computational approaches are changing the field, from merely disease-specific observational models into target-specific predictive models. Traditionally, toxicology has strong links with other fields such as biology, chemistry, pharmacology and medicine. With the rise of synthetic and new engineered materials, alongside ongoing prioritisation needs in chemical risk assessment for existing chemicals, early predictive evaluations are becoming of utmost importance to both scientific and regulatory purposes. ELIXIR is an intergovernmental organisation that brings together life science resources from across Europe. To coordinate the linkage of various life science efforts around modern predictive toxicology, the establishment of a new ELIXIR Community is seen as instrumental. In the past few years, joint efforts, building on incidental overlap, have been piloted in the context of ELIXIR. For example, the EU-ToxRisk, diXa, HeCaToS, transQST, and the nanotoxicology community have worked with the ELIXIR TeSS, Bioschemas, and Compute Platforms and activities. In 2018, a core group of interested parties wrote a proposal, outlining a sketch of what this new ELIXIR Toxicology Community would look like. A recent workshop (held September 30th to October 1st, 2020) extended this into an ELIXIR Toxicology roadmap and a shortlist of limited investment-high gain collaborations to give body to this new community. This Whitepaper outlines the results of these efforts and defines our vision of the ELIXIR Toxicology Community and how it complements other ELIXIR activities.  
  •  
3.
  • Bataineh, Mahmoud, et al. (författare)
  • Recent analytical methods for risk assessment of emerging contaminants in ecosystems
  • 2021
  • Ingår i: Pollution Assessment for Sustainable Practices in Applied Sciences and Engineering. - : Elsevier. - 9780128095829 ; , s. 739-778
  • Bokkapitel (refereegranskat)abstract
    • The analysis of emerging contaminants (ECs) remains a dynamic and challenging field because this involves analyzing chemicals with widely varying properties in a large variety of environmental matrices. Usually, concentration levels of ECs are particularly low, such that sensitive and selective analytical methods are required for their analysis. This chapter focuses on five classes of ECs (pharmaceuticals and personal care products, disinfection by-products, perfluorinated compounds, polybrominated diphenyl ethers, and benzotriazoles and dioxane [B and D]) in terms of their occurrence and level of detection. It also highlights the rule of regulatory agencies on the EC detection limit. Sampling techniques used to detect ECs in different environmental matrices are discussed, such as (1) water grab samples from inland and offshore; (2) large-volume solid-phase extraction for water samples; (3) passive samplers (Polar Organic Chemical Integrative Sampler, Chemcatcher, Altesil SR sheet, and semipermeable membrane devices); (4) sediment grab samples (Van Veen and gravity-free fall corer); (5) biota grab samples with different trophic levels (sediment microorganisms, mussels, fish, and mammals; and (6) air passive samplers (inland and/or offshore). In addition, the latest progress is reviewed in sample preparation, extraction, and cleanup.
  •  
4.
  • Dulio, Valeria, et al. (författare)
  • Beyond target chemicals : updating the NORMAN prioritisation scheme to support the EU chemicals strategy with semi-quantitative suspect/non-target screening data
  • 2024
  • Ingår i: Environmental Sciences Europe. - : Springer Nature. - 2190-4707 .- 2190-4715. ; 36:1
  • Tidskriftsartikel (refereegranskat)abstract
    • Background: Prioritisation of chemical pollutants is a major challenge for environmental managers and decision-makers alike, which is essential to help focus the limited resources available for monitoring and mitigation actions on the most relevant chemicals. This study extends the original NORMAN prioritisation scheme beyond target chemicals, presenting the integration of semi-quantitative data from retrospective suspect screening and expansion of existing exposure and risk indicators. The scheme utilises data retrieved automatically from the NORMAN Database System (NDS), including candidate substances for prioritisation, target and suspect screening data, ecotoxicological effect data, physico-chemical data and other properties. Two complementary workflows using target and suspect screening monitoring data are applied to first group the substances into six action categories and then rank the substances using exposure, hazard and risk indicators. The results from the ‘target’ and ‘suspect screening’ workflows can then be combined as multiple lines of evidence to support decision-making on regulatory and research actions.Results: As a proof-of-concept, the new scheme was applied to a combined dataset of target and suspect screening data. To this end, > 65,000 substances on the NDS, of which 2579 substances supported by target wastewater monitoring data, were retrospectively screened in 84 effluent wastewater samples, totalling > 11 million data points. The final prioritisation results identified 677 substances as high priority for further actions, 7455 as medium priority and 326 with potentially lower priority for actions. Among the remaining substances, ca. 37,000 substances should be considered of medium priority with uncertainty, while it was not possible to conclude for 19,000 substances due to insufficient information from target monitoring and uncertainty in the identification from suspect screening. A high degree of agreement was observed between the categories assigned via target analysis and suspect screening-based prioritisation. Suspect screening was a valuable complementary approach to target analysis, helping to prioritise thousands of substances that are insufficiently investigated in current monitoring programmes.Conclusions: This updated prioritisation workflow responds to the increasing use of suspect screening techniques. It can be adapted to different environmental compartments and can support regulatory obligations, including the identification of specific pollutants in river basins and the marine environments, as well as the confirmation of environmental occurrence levels predicted by modelling tools. Graphical Abstract: (Figure presented.)
  •  
5.
  • Dulio, Valeria, et al. (författare)
  • The NORMAN Association and the European Partnership for Chemicals Risk Assessment (PARC) : let’s cooperate!
  • 2020
  • Ingår i: Environmental Sciences Europe. - : Springer. - 2190-4707 .- 2190-4715. ; 32:1
  • Tidskriftsartikel (refereegranskat)abstract
    • The Partnership for Chemicals Risk Assessment (PARC) is currently under development as a joint research and innovation programme to strengthen the scientific basis for chemical risk assessment in the EU. The plan is to bring chemical risk assessors and managers together with scientists to accelerate method development and the production of necessary data and knowledge, and to facilitate the transition to next-generation evidence-based risk assessment, a non-toxic environment and the European Green Deal. The NORMAN Network is an independent, well-established and competent network of more than 80 organisations in the field of emerging substances and has enormous potential to contribute to the implementation of the PARC partnership. NORMAN stands ready to provide expert advice to PARC, drawing on its long experience in the development, harmonisation and testing of advanced tools in relation to chemicals of emerging concern and in support of a European Early Warning System to unravel the risks of contaminants of emerging concern (CECs) and close the gap between research and innovation and regulatory processes. In this commentary we highlight the tools developed by NORMAN that we consider most relevant to supporting the PARC initiative: (i) joint data space and cutting-edge research tools for risk assessment of contaminants of emerging concern; (ii) collaborative European framework to improve data quality and comparability; (iii) advanced data analysis tools for a European early warning system and (iv) support to national and European chemical risk assessment thanks to harnessing, combining and sharing evidence and expertise on CECs. By combining the extensive knowledge and experience of the NORMAN network with the financial and policy-related strengths of the PARC initiative, a large step towards the goal of a non-toxic environment can be taken.
  •  
6.
  • Hollender, Juliane, et al. (författare)
  • NORMAN guidance on suspect and non-target screening in environmental monitoring
  • 2023
  • Ingår i: Environmental Sciences Europe. - : Springer Nature. - 2190-4707 .- 2190-4715. ; 35:1
  • Forskningsöversikt (refereegranskat)abstract
    • Increasing production and use of chemicals and awareness of their impact on ecosystems and humans has led to large interest for broadening the knowledge on the chemical status of the environment and human health by suspect and non-target screening (NTS). To facilitate effective implementation of NTS in scientific, commercial and governmental laboratories, as well as acceptance by managers, regulators and risk assessors, more harmonisation in NTS is required. To address this, NORMAN Association members involved in NTS activities have prepared this guidance document, based on the current state of knowledge. The document is intended to provide guidance on performing high quality NTS studies and data interpretation while increasing awareness of the promise but also pitfalls and challenges associated with these techniques. Guidance is provided for all steps; from sampling and sample preparation to analysis by chromatography (liquid and gas-LC and GC) coupled via various ionisation techniques to high-resolution tandem mass spectrometry (HRMS/MS), through to data evaluation and reporting in the context of NTS. Although most experience within the NORMAN network still involves water analysis of polar compounds using LC-HRMS/MS, other matrices (sediment, soil, biota, dust, air) and instrumentation (GC, ion mobility) are covered, reflecting the rapid development and extension of the field. Due to the ongoing developments, the different questions addressed with NTS and manifold techniques in use, NORMAN members feel that no standard operation process can be provided at this stage. However, appropriate analytical methods, data processing techniques and databases commonly compiled in NTS workflows are introduced, their limitations are discussed and recommendations for different cases are provided. Proper quality assurance, quantification without reference standards and reporting results with clear confidence of identification assignment complete the guidance together with a glossary of definitions. The NORMAN community greatly supports the sharing of experiences and data via open science and hopes that this guideline supports this effort.
  •  
Skapa referenser, mejla, bekava och länka
  • Resultat 1-6 av 6
Typ av publikation
tidskriftsartikel (4)
forskningsöversikt (1)
bokkapitel (1)
Typ av innehåll
refereegranskat (6)
Författare/redaktör
Schymanski, Emma L. (6)
Slobodnik, Jaroslav (5)
Hollender, Juliane (4)
Alygizakis, Nikiforo ... (4)
Ahrens, Lutz (3)
Čirka, Ľuboš (3)
visa fler...
Thomaidis, Nikolaos ... (3)
Haglund, Peter (3)
Martin, Jonathan W. (2)
Krauss, Martin (2)
Lamoree, Marja (2)
Brack, Werner (2)
Ng, Kelsey (2)
Deviller, Geneviève (2)
Hollert, Henner (2)
Salek, Reza M (2)
Hernandez, Felix (2)
van Bavel, Bert (1)
Hansen, Martin (1)
Hale, Sarah E. (1)
van den Brink, Paul (1)
Munthe, John (1)
Schulz, Wolfgang (1)
Zhang, Jian (1)
Wheelock, Craig E. (1)
Engwall, Magnus, 196 ... (1)
Vrana, Branislav (1)
Neumann, Steffen (1)
Béen, Frederic (1)
Kaserzon, Sarit (1)
Spjuth, Ola, Profess ... (1)
Covaci, Adrian (1)
Lundy, Lian (1)
Fatta-Kassinos, Desp ... (1)
Vermeulen, Roel C. H ... (1)
Schlabach, Martin (1)
Maran, Uko (1)
Glowacka, Natalia (1)
Klánová, Jana (1)
Grafström, Roland (1)
Scheringer, Martin (1)
Arp, Hans Peter H. (1)
Rocca-Serra, Philipp ... (1)
Audouze, Karine (1)
Liu, Yanna (1)
Bataineh, Mahmoud (1)
Gallampois, Christin ... (1)
Remy, Sylvie (1)
Kruve, Anneli (1)
Brunner, Andrea M. (1)
visa färre...
Lärosäte
Umeå universitet (4)
Stockholms universitet (3)
Sveriges Lantbruksuniversitet (2)
Uppsala universitet (1)
Luleå tekniska universitet (1)
Örebro universitet (1)
visa fler...
IVL Svenska Miljöinstitutet (1)
visa färre...
Språk
Engelska (6)
Forskningsämne (UKÄ/SCB)
Naturvetenskap (5)
Teknik (1)
Medicin och hälsovetenskap (1)

År

Kungliga biblioteket hanterar dina personuppgifter i enlighet med EU:s dataskyddsförordning (2018), GDPR. Läs mer om hur det funkar här.
Så här hanterar KB dina uppgifter vid användning av denna tjänst.

 
pil uppåt Stäng

Kopiera och spara länken för att återkomma till aktuell vy