SwePub
Sök i SwePub databas

  Utökad sökning

Träfflista för sökning "WFRF:(Scragg Jonathan J. 1983 ) srt2:(2015-2019)"

Sökning: WFRF:(Scragg Jonathan J. 1983 ) > (2015-2019)

  • Resultat 1-14 av 14
Sortera/gruppera träfflistan
   
NumreringReferensOmslagsbildHitta
1.
  • Davydova, Alexandra, et al. (författare)
  • The Single Phase Region in Cu2ZnSnS4 Thin Films from Theory and Combinatorial Experiments
  • 2018
  • Ingår i: Chemistry of Materials. - : American Chemical Society (ACS). - 0897-4756 .- 1520-5002. ; 30:14, s. 4624-4638
  • Tidskriftsartikel (refereegranskat)abstract
    • Cu2ZnSnS4 (CZTS) is hoped to be a future, earth-abundant absorber material for thin film solar cells, but performance remains below the level needed for commercialization. In this work, the size of the single phase region of CZTS obtained from thin film synthesis methods is explored, to determine the scope available for defect engineering and thereby future improvements in solar cell performance. A chemical model for the single phase region is presented, based on equilibria between defect complexes in the CZTS phase and the other solid- and gas-phase components present during synthesis. The model predicts a variable single phase region size, depending on the partial pressures of SnS and S2. The model is verified by analysis of combinatorial thin-film CZTS samples prepared with different synthetic conditions and characterized by Raman and compositional mapping. We conclude that typical synthesis strategies for CZTS are not capable of accessing the full range of the CZTS single phase region since the required partial pressure of S2 is very large. The important implication is that our understanding of CZTS defect chemistry from experimental studies is incomplete and that scope exists for tuning the defect properties toward better solar cell performance.
  •  
2.
  • Davydova, Alexandra, et al. (författare)
  • Thio-olivine Mn2SiS4 thin films by reactive magnetron sputtering : Structural and optical properties with insights from first principles calculations
  • 2018
  • Ingår i: Materials & design. - : ELSEVIER SCI LTD. - 0264-1275 .- 1873-4197. ; 152, s. 110-118
  • Tidskriftsartikel (refereegranskat)abstract
    • Thio-olivines such as (Fe,Mn)(2)(Si,Ge)S-4 have been proposed as candidate earth-abundant materials for single and multi-junction solar cells. In this work we present the first investigation of Mn2SiS4 thin films prepared by reactive magnetron sputtering deposition, using a composition grading approach. Precursor instability in ambient conditions is observed, revealing the oxidation/hydrolysis of Si-S bonds from the as-deposited film as a blocking mechanism for the ternary compound formation. Structural, morphological and optical properties of the annealed Mn2SiS4 films are reported for the first time. Resulting Mn2SiS4 films have orthorhombic Pnma structure and are polycrystalline. Raman active modes at 325 nm excitation are observed at 262, 320, 400 and 464 cm(-1). From room temperature photoluminescence at 532 nm excitation the band gap is estimated to be about 1.9 eV, but a high optical absorption coefficient of > 10(4) cm(-1) was only obtained at E > 2.8 eV.First principles calculations are used for better understanding of opto-electronic properties. From the calculations, Mn2SiS4 is suggested to have a band gap of about 1.73-1.86 eV depending on the magnetic configuration of Mn and slight indirect nature. The slow absorption onset is interpreted by strong anisotropy due to one of the components of the dielectric function. 
  •  
3.
  • Englund, Sven, et al. (författare)
  • Antimony-Doped Tin Oxide as Transparent Back Contact in Cu2ZnSnS4 Thin-Film Solar Cells
  • 2019
  • Ingår i: Physica Status Solidi (a) applications and materials science. - : Wiley. - 1862-6300 .- 1862-6319. ; 216:22
  • Tidskriftsartikel (refereegranskat)abstract
    • Antimony-doped tin oxide (Sn2O3:Sb, ATO) is investigated as a transparent back contact for Cu2ZnSnS4 (CZTS) thin-film solar cells. The stability of the ATO under different anneal conditions and the effect from ATO on CZTS absorber growth are studied. It is found that ATO directly exposed to sulfurizing anneal atmosphere reacts with S, but when covered by CZTS, it does not deteriorate when annealed at T < 550 degrees C. The electrical properties of ATO are even found to improve when CZTS is annealed at T = 534 degrees C. At T = 580 degrees C, it is found that ATO reacts with S and degrades. Analysis shows repeatedly that ATO affects the absorber growth as large amounts of Sn-S secondary compounds are found on the absorber surfaces. Time-resolved anneal series show that these compounds form early during anneal and evaporate with time to leave pinholes behind. Device performance can be improved by addition of Na prior to annealing. The best CZTS device on ATO back contact herein has an efficiency of 2.6%. As compared with a reference on a Mo back contact, a similar open-circuit voltage and short-circuit current density are achieved, but a lower fill factor is measured.
  •  
4.
  • Englund, Sven, et al. (författare)
  • Characterization of TiN back contact interlayers with varied thickness for Cu2ZnSn(S,Se)4 thin film solar cells
  • 2017
  • Ingår i: Thin Solid Films. - : Elsevier BV. - 0040-6090 .- 1879-2731. ; 639, s. 91-97
  • Tidskriftsartikel (refereegranskat)abstract
    • TiN thin films have previously been used as intermediate barrier layers on Mo back contacts in CZTS(e) solar cells to suppress excessive reaction of the Mo in the annealing step. In this work, TiN films with various thickness (20, 50 and 200 nm) were prepared with reactive DC magnetron sputtering on Mo/SLG substrates and annealed, without CZTS(e) layers, in either S or Se atmospheres. The as-deposited references and the annealed samples were characterized with X-ray Photoelectron Spectroscopy, X-ray Diffraction, Time-of-Flight-Elastic Recoil Detection Analysis, Time-of-Flight-Medium-Energy Ion Scattering, Scanning Electron Microscopy and Scanning Transmission Electron Microscopy – Electron Energy Loss Spectroscopy. It was found that the as-deposited TiN layers below 50 nm show discontinuities, which could be related to the surface roughness of the Mo. Upon annealing, TiN layers dramatically reduced the formation of MoS(e)2, but did not prevent the sulfurization or selenization of Mo. The MoS(e)2 had formed near the discontinuities, both below and above the TiN layers. Another unexpected finding was that the thicker TiN layer increased the amount of Na diffused to the surface after anneal, and we suggest that this effect is related to the Na affinity of the TiN layers and the MoS(e)2 thickness.
  •  
5.
  • Englund, Sven, et al. (författare)
  • TiN Interlayers with Varied Thickness in Cu2ZnSnS(e)(4) Thin Film Solar Cells : Effect on Na Diffusion, Back Contact Stability, and Performance
  • 2018
  • Ingår i: Physica Status Solidi (a) applications and materials science. - : Wiley. - 1862-6300 .- 1862-6319. ; 215:23
  • Tidskriftsartikel (refereegranskat)abstract
    • In this study, interlayers with varied thickness of TiN between Cu2ZnSnS(e)(4) (CZTS(e)) absorbers and Mo on soda-lime glass substrates are investigated for CZTS(e) thin film solar cells. Na diffusion is analyzed using Secondary Ion Mass Spectrometry and it is found that the use of thick TiN interlayers facilitates Na diffusion into the absorbers. The CZTS(e)/TiN/Mo interfaces are scrutinized using Transmission Electron Microscopy (TEM) Electron Energy Loss Spectroscopy (EELS). It is found that diffusion of chalcogens present in the precursor occurs through openings, resulting from surface roughness in the Mo, in the otherwise chemically stable TiN interlayers, forming point contacts of MoS(e)(2). It is further established that both chalcogens and Mo diffuse along the TiN interlayer grain boundaries. Solar cell performance for sulfur-annealed samples improved with increased thickness of TiN, and with a 200 nm TiN interlayer, the solar cell performance is comparable to a typical Mo reference. Pure TiN bulk contacts are investigated and shown to work, but the performance is still inferior to the TiN interlayer back contacts. The use of thick TiN interlayers offers a pathway to achieve high efficiency CZTS(e) solar cells on highly inert back contacts.
  •  
6.
  • Kosyak, Volodymyr, et al. (författare)
  • Calculation of point defect concentration in Cu2ZnSnS4 : Insights into the high-temperature equilibrium and quenching
  • 2017
  • Ingår i: Journal of Applied Physics. - : AMER INST PHYSICS. - 0021-8979 .- 1089-7550. ; 122:3
  • Tidskriftsartikel (refereegranskat)abstract
    • Herein, we study the native point defect equilibrium in Cu2ZnSnS4 (CZTS) by applying a statistical thermodynamic model. The stable chemical- potential space (SCPS) of CZTS at an elevated temperature was estimated directly, on the basis of deviations from stoichiometry calculated for the different combinations of chemical potential of the components. We show that the SCPS is narrow due to high concentration of (V-Cu(-) Zn-Cu(+)) complex which is dominant over other complexes and isolated defects. The CZTS was found to have p-type conductivity for both stoichiometric and Cu-poor/Zn-rich composition. It is established that the reason for this is that the majority of donor-like Zn-Cu(+) antisites are involved in the formation of (V-Cu(-) Zn-Cu(+)) complex making Cu-Zn dominant and providing p- type conductivity even for Cu-poor/Zn-rich composition. However, our calculation reveals that the hole concentration is almost insensitive to the variation of the chemical composition within the composition region of the single-phase CZTS due to nearly constant concentration of dominant charged defects. The calculations for the full equilibrium and quenching indicate that hole concentration is strongly dependent on the annealing temperature and decreases substantially after the drastic cooling. This means that the precise control of annealing temperature and post-annealing cooling rate are critical for tuning the electrical properties of CZTS.
  •  
7.
  • Larsen, Jes K, et al. (författare)
  • Sulfurization of Co-Evaporated Cu(In,Ga)Se-2 as a Postdeposition Treatment
  • 2018
  • Ingår i: IEEE Journal of Photovoltaics. - : IEEE-INST ELECTRICAL ELECTRONICS ENGINEERS INC. - 2156-3381 .- 2156-3403. ; 8:2, s. 604-610
  • Tidskriftsartikel (refereegranskat)abstract
    • It is investigated if the performance of Cu(In,Ga)Se-2 (CIGSe) solar cells produced by co-evaporation can be improved by surface sulfurization in a postdeposition treatment. The expected benefit would be the formation of a sulfur/selenium gradient resulting in reduced interface recombination and increased open-circuit voltage. In the conditions used here it was, however, found that the reaction of the CIGSe layer in a sulfur environment results in the formation of a CuInS2 (CIS) surface phase containing no or very little selenium and gallium. At the same time, a significant pile up of gallium was observed at the CIGSe/CIS boundary. This surface structure was formed for a wide range of annealing conditions investigated in this paper. Increasing the temperature or extending the time of the dwell stage had a similar effect on the material. The gallium enrichment and CIS surface layer widens the surface bandgap and therefore increases the open-circuit voltage. At the same time, the fill factor is reduced, since the interface layer acts as an electron barrier. Due to the balance of these effects, the conversion efficiency could not be improved.
  •  
8.
  • Paneta, Valentina, et al. (författare)
  • Ion-beam based characterization of TiN back contact interlayers for CZTS(e), thin film solar cells
  • 2019
  • Ingår i: Nuclear Instruments and Methods in Physics Research Section B. - : Elsevier BV. - 0168-583X .- 1872-9584. ; 450, s. 262-266
  • Tidskriftsartikel (refereegranskat)abstract
    • Time-of-Flight Elastic Recoil Detection Analysis (ToF-ERDA) and Time-of-Flight Medium-Energy Ion Scattering (ToF-MEIS) have been employed to investigate the potential of TiN thin films as intermediate layers on Mo back contact in CZTS(e) solar cells. TiN films of various thicknesses (20, 50 and 200 nm) were prepared with reactive DC magnetron sputtering and atomic layer deposition on Mo/SLG (soda-lime glass) substrates and annealed ex situ in either S or Se atmosphere. In situ annealing of the samples to different temperatures was also performed in the MEIS setup together with subsequent ToF-MEIS and ERDA analysis. The results of the sample and interlayer composition profiles, layer quality and thickness distributions are discussed in context with complementary experimental findings partially obtained previously by X-ray Photoelectron Spectroscopy (XPS), X-ray Diffraction (XRD), Scanning Electron Microscopy and Scanning Transmission Electron Microscopy- Electron Energy Loss Spectroscopy (STEM - EELS).
  •  
9.
  • Platzer Björkman, Charlotte, 1976-, et al. (författare)
  • Back and front contacts in kesterite solar cells : state-of-the-art and open questions
  • 2019
  • Ingår i: Journal of Physics. - : Institute of Physics Publishing (IOPP). - 2515-7655. ; 1:4
  • Tidskriftsartikel (refereegranskat)abstract
    • We review the present state-of-the-art within back and front contacts in kesterite thin film solar cells, as well as the current challenges. At the back contact, molybdenum (Mo) is generally used, and thick Mo(S, Se)2 films of up to several hundred nanometers are seen in record devices, in particular for selenium-rich kesterite. The electrical properties of Mo(S, Se)2 can vary strongly depending on orientation and indiffusion of elements from the device stack, and there are indications that the back contact properties are less ideal in the sulfide as compared to the selenide case. However, the electronic interface structure of this contact is generally not well-studied and thus poorly understood, and more measurements are needed for a conclusive statement. Transparent back contacts is a relatively new topic attracting attention as crucial component in bifacial and multijunction solar cells. Front illuminated efficiencies of up to 6% have so far been achieved by adding interlayers that are not always fully transparent. For the front contact, a favorable energy level alignment at the kesterite/CdS interface can be confirmed for kesterite absorbers with an intermediate [S]/([S]+[Se]) composition. This agrees with the fact that kesterite absorbers of this composition reach highest efficiencies when CdS buffer layers are employed, while alternative buffer materials with larger band gap, such as Cd1−x Zn x S or Zn1−x Sn x O y , result in higher efficiencies than devices with CdS buffers when sulfur-rich kesterite absorbers are used. Etching of the kesterite absorber surface, and annealing in air or inert atmosphere before or after buffer layer deposition, has shown strong impact on device performance. Heterojunction annealing to promote interdiffusion was used for the highest performing sulfide kesterite device and air-annealing was reported important for selenium-rich record solar cells.
  •  
10.
  • Ren, Yi, et al. (författare)
  • Evolution of Cu2ZnSnS4 during Non-Equilibrium Annealing with Quasi-in Situ Monitoring of Sulfur Partial Pressure
  • 2017
  • Ingår i: Chemistry of Materials. - : American Chemical Society (ACS). - 0897-4756 .- 1520-5002. ; 29:8, s. 3713-3722
  • Tidskriftsartikel (refereegranskat)abstract
    • Chalcogen-based materials like Cu2ZnSnS4 (CZTS) have attracted extensive attention for applications such as photovoltaics and water splitting. However, an inability to monitor the sulfur partial pressure (PS2) during the non-equilibrium annealing process at high temperatures complicates the synthesis of CZTS with controlled optoelectronic properties. Here we demonstrate that PS2 can be monitored by investigating the Sn–S phase transformation. We showed that PS2 drops considerably over the annealing time, causing gradual alterations in CZTS: (i) a change in defect type and (ii) evolution of ZnS and SnxSy phases. With additional ordering treatment, we observed that the low room-temperature photoluminescence energy usually seen in CZTS can result from insufficient PS2 during annealing. It is proven that remarkable Voc beyond 700 mV for solar cells with nonoptimal CdS buffer can be repeatedly achieved when CZTS is prepared under a sufficiently high PS2. An ordering treatment before CdS deposition can further improve Voc to 783 mV.
  •  
11.
  • Ren, Yi, et al. (författare)
  • Evolution of Na-S(-O) compounds on Cu2ZnSnS4 absorber surface and its effect on CdS growth
  • 2016
  • Ingår i: 2016 IEEE 43rd Photovoltaic Specialists Conference (PVSC). - New York : IEEE. - 9781509027248 ; , s. 2255-2257
  • Konferensbidrag (refereegranskat)abstract
    • Na-containing surface compounds is likely to form during the formation of CZTS absorber. Still, the understanding of any potential influence on buffer layer growth and device performance is limited. In this work, we observed that NaxS compound can possibly form on the CZTS surface after annealing, and negatively affect the growth of the subsequent CdS buffer. The NaxS compound is oxidized to Na2SO4 via air exposing the annealed CZTS surface, which allows greatly improved quality of the CdS layer. This provides new insights for improving the CdS/CZTS interface during the fabrication of CZTS solar cells.
  •  
12.
  • Ren, Yi, et al. (författare)
  • Investigation of the SnS/Cu2ZnSnS4 interfaces in Kesterite Thin-Film Solar Cells
  • 2017
  • Ingår i: ACS Energy Letters. - : American Chemical Society (ACS). - 2380-8195. ; 2:5, s. 976-981
  • Tidskriftsartikel (refereegranskat)abstract
    • Kesterite Cu2ZnSnS4 (CZTS), having only earth abundant elements, is a promising solar cell material. Nevertheless, the impact of the SnS secondary phase, which often forms alongside CZTS synthesis at high annealing temperature, on CZTS solar cells is poorly studied. We confirm, by means of X-ray diffraction, Raman scattering, and energy dispersive X-ray spectroscopy mapping, that this phase tends to segregate at both the surface and the back side of annealed CZTS films with Cu-poor and Zn-rich composition. Using electron beam-induced current measurements, it is further demonstrated that the formation of SnS on the CZTS surface is harmful for solar cells, whereas the SnS phase can be beneficial for solar cells when it segregates on the CZTS rear. This positive contribution of SnS could stem from a passivation effect at the CZTS/SnS rear interface. This work opens new possibilities for an alternative interface development for kesterite-based photovoltaic technology.
  •  
13.
  • Rudisch, Katharina, et al. (författare)
  • Structural and Electronic Properties of Cu2MnSnS4 from Experiment and First-Principles Calculations
  • 2019
  • Ingår i: Physica status solidi. B, Basic research. - : Wiley-VCH Verlagsgesellschaft. - 0370-1972 .- 1521-3951. ; 256:7
  • Tidskriftsartikel (refereegranskat)abstract
    • Cu2MnSnS4 shares several promising properties with the widely investigated Cu2ZnSnS4 for photovoltaic applications such as containing only earth abundant and non-toxic elements, and suitable absorption characteristics for absorber materials. Thin film Cu2MnSnS4 samples with various cation compositions are co-sputtered reactively followed by a high temperature anneal. Formation of Cu2MnSnS4 and co-existence of several secondary phases is verified by XRD and Raman. Our investigation of the crystal structure based on first-principles DFT confirms that stannite crystal structure is preferred over kesterite, although, further verification considering cation disorder is needed. The direct band gap of Cu2MnSnS4 is calculated as 1.52 eV (1.62 eV) for stannite (kesterite), which coincides with the range of the measured band gaps from spectrophotometry of 1.42-1.59 eV. After further annealing treatments below 240 degrees C, the absorption shows reversible changes: the band gap blue-shifts and the Urbach tail energy is reduced. It is concluded that, just like Cu2ZnSnS4, disorder also occurs in Cu2MnSnS4. The implications of our findings are discussed and related to the current understanding of cation disorder in Cu2ZnSnS4 and related compounds. Furthermore, for the first time first-principles DFT investigations are presented for the thiospinel Cu2MnSn3S8 which is observed experimentally as a secondary phase in Sn-rich Cu2MnSnS4 thin films.
  •  
14.
  • Rudisch, Katharina, et al. (författare)
  • The effect of stoichiometry on Cu-Zn ordering kinetics in Cu2ZnSnS4 thin film
  • 2018
  • Ingår i: Journal of Applied Physics. - : AIP Publishing. - 0021-8979 .- 1089-7550. ; 123:16
  • Tidskriftsartikel (refereegranskat)abstract
    • Cu-Zn disorder in Cu2ZnSnS4 (CZTS) may be responsible for the large open circuit voltage deficit in CZTS based solar cells. In this study, it was investigated how composition-dependent defect complexes influence the order-disorder transition. A combinatorial CZTS thin film sample was produced with a cation composition gradient across the sample area. The graded sample was exposed to various temperature treatments and the degree of order was analyzed with resonant Raman spectroscopy for various compositions ranging from E- and A-type to B-, F-, and C-type CZTS. We observe that the composition has no influence on the critical temperature of the order-disorder transition, but strongly affects the activation energy. Reduced activation energy is achieved with compositions with Cu/Sn > 2 or Cu/Sn < 1.8 suggesting an acceleration of the cation ordering in the presence of vacancies or interstitials. This is rationalized with reference to the effect of point defects on exchange mechanisms. The implications for reducing disorder in CZTS thin films are discussed in light of the new findings.
  •  
Skapa referenser, mejla, bekava och länka
  • Resultat 1-14 av 14

Kungliga biblioteket hanterar dina personuppgifter i enlighet med EU:s dataskyddsförordning (2018), GDPR. Läs mer om hur det funkar här.
Så här hanterar KB dina uppgifter vid användning av denna tjänst.

 
pil uppåt Stäng

Kopiera och spara länken för att återkomma till aktuell vy