SwePub
Sök i SwePub databas

  Extended search

Träfflista för sökning "WFRF:(Settino Adriana) srt2:(2021)"

Search: WFRF:(Settino Adriana) > (2021)

  • Result 1-3 of 3
Sort/group result
   
EnumerationReferenceCoverFind
1.
  • Guzzi, G., et al. (author)
  • Exact hybrid-kinetic equilibria for magnetized plasmas with shearing flows
  • 2021
  • In: Astronomy and Astrophysics. - : EDP Sciences. - 0004-6361 .- 1432-0746. ; 645
  • Journal article (peer-reviewed)abstract
    • Context. Magnetized plasmas characterized by shearing flows are present in many natural contexts, such as the Earth's magnetopause and the solar wind. The collisionless nature of involved plasmas requires a kinetic description. When the width of the shear layer is on the order of ion scales, the hybrid Vlasov-Maxwell approach can be adopted for this purpose.Aims. The aim of this work is to derive explicit forms for stationary configurations of magnetized plasmas with planar shearing flows within the hybrid Vlasov-Maxwell description. Two configurations are considered: the first with a uniform magnetic field obliquely directed with respect to the bulk velocity and the second with a uniform-magnitude variable-direction magnetic field.Methods. We obtained stationary ion distribution functions by combining single-particle constant of motions, which are derived through the study of particle dynamics. Preliminary information about the form of the distribution functions were analytically derived in considering a local approximation for the background electromagnetic field. Then a numerical method was set up to obtain a solution for general profiles.Results. We determined explicit distribution functions that allow us to obtain profiles of density, bulk velocity, temperature, and heat flux. Anisotropy and agyrotropy in the distribution function were also evaluated. The stationarity of the solution during numerical simulations was checked in the uniform oblique magnetic field case.Conclusions. The configurations considered here can be used as models for the Earth's magnetopause in simulations of the Kelvin-Helmholtz instability.
  •  
2.
  • Perri, Silvia, et al. (author)
  • Nature of Electrostatic Fluctuations in the Terrestrial Magnetosheath
  • 2021
  • In: Astrophysical Journal. - : American Astronomical Society. - 0004-637X .- 1538-4357. ; 919:2
  • Journal article (peer-reviewed)abstract
    • The high cadence plasma, electric, and magnetic field measurements by the Magnetospheric MultiScale spacecraft allow us to explore the near-Earth space plasma with an unprecedented time and spatial resolution, resolving electron-scale structures that naturally emerge from plasma complex dynamics. The formation of small-scale turbulent features is often associated to structured, non-Maxwellian particle velocity distribution functions that are not at thermodynamic equilibrium. Using measurements in the terrestrial magnetosheath, this study focuses on regions presenting bumps in the power spectral density of the parallel electric field at subproton scales. Correspondingly, it is found that the ion velocity distribution functions exhibit beam-like features at nearly the local ion thermal speed. Ion-cyclotron waves in the ion-scale range are frequently observed at the same locations. These observations, supported by numerical simulations, are consistent with the generation of ion-bulk waves that propagate at the ion thermal speed. This represents a new branch of efficient energy transfer at small scales, which may be relevant to weakly collisional astrophysical plasmas.
  •  
3.
  • Settino, Adriana, et al. (author)
  • Kinetic Features for the Identification of Kelvin-Helmholtz Vortices in In Situ Observations
  • 2021
  • In: Astrophysical Journal. - : American Astronomical Society. - 0004-637X .- 1538-4357. ; 912:2
  • Journal article (peer-reviewed)abstract
    • The boundaries identification of Kelvin-Helmholtz vortices in observational data has been addressed by searching for single-spacecraft small-scale signatures. A recent hybrid Vlasov-Maxwell simulation of Kelvin-Helmholtz instability has pointed out clear kinetic features that uniquely characterize the vortex during both the nonlinear and turbulent stage of the instability. We compare the simulation results with in situ observations of Kelvin-Helmholtz vortices by the Magnetospheric Multiscale satellites. We find good agreement between simulation and observations. In particular, the edges of the vortex are associated with strong current sheets, while the center is characterized by a low value for the magnitude of the total current density and strong deviation of the ion distribution function from a Maxwellian distribution. We also find a significant temperature anisotropy parallel to the magnetic field inside the vortex region and strong agyrotropies near the edges. We suggest that these kinetic features can be useful for the identification of Kelvin-Helmholtz vortices in in situ data.
  •  
Skapa referenser, mejla, bekava och länka
  • Result 1-3 of 3

Kungliga biblioteket hanterar dina personuppgifter i enlighet med EU:s dataskyddsförordning (2018), GDPR. Läs mer om hur det funkar här.
Så här hanterar KB dina uppgifter vid användning av denna tjänst.

 
pil uppåt Close

Copy and save the link in order to return to this view