SwePub
Sök i SwePub databas

  Utökad sökning

Träfflista för sökning "WFRF:(Sha Chao) "

Sökning: WFRF:(Sha Chao)

  • Resultat 1-6 av 6
Sortera/gruppera träfflistan
   
NumreringReferensOmslagsbildHitta
1.
  • 2019
  • Tidskriftsartikel (refereegranskat)
  •  
2.
  •  
3.
  • Sha, Chao, et al. (författare)
  • A Periodic and Distributed Energy Supplement Method based on Maximum Recharging Benefit in Sensor Networks
  • 2021
  • Ingår i: IEEE Internet of Things Journal. - : IEEE. - 2327-4662. ; 8:4, s. 2649-2669
  • Tidskriftsartikel (refereegranskat)abstract
    • The issue of using vehicles to wirelessly recharge nodes for energy supplement in Wireless Sensor Networks has become a research hotspot in recent works. Unfortunately, most of the researches did not consider the rationality of the recharging request threshold and also overlooked the difference of node’s power consumption, which may lead to premature death of nodes as well as low efficiency of Wireless Charging Vehicles(WCVs). In order to solve the above problems, a Periodic and Distributed Energy Supplement Method based on maximum recharging benefit (PDESM) is proposed in this paper. Firstly, to avoid frequent recharging requests from nodes, we put forward an annuluses based cost-balanced data uploading strategy under deterministic deployment. Then, one WCV in each annulus periodically selects and recharges nodes located in this region which send the energy supplement requests. In addition, the predicted value of power consumption of nodes are calculated out according to the real-time energy consumption rate, and thus the most appropriate recharging request threshold is obtained. Finally, a moving path optimization scheme based on Minimum Spanning Tree is constructed for distributed recharging. Simulation results show that, PDESM performs well on enhancing the proportion of the alive nodes as well as the wireless recharging efficiency compared with NFAOC and FCFS. Moreover, it also has advantage in balancing the energy consumption of WCVs.
  •  
4.
  • Sha, Chao, et al. (författare)
  • A Type of Virtual Force based Energy-hole Mitigation Strategy for Sensor Networks
  • 2020
  • Ingår i: IEEE Sensors Journal. - New York : IEEE. - 1530-437X .- 1558-1748. ; 20:2, s. 1105-1119
  • Tidskriftsartikel (refereegranskat)abstract
    • In the era of Big Data and Mobile Internet, how to ensure the terminal devices (e.g., sensor nodes) work steadily for a long time is one of the key issues to improve the efficiency of the whole network. However, a lot of facts have shown that the unattended equipments are prone to failure due to energy exhaustion, physical damage and other reasons. This may result in the emergence of energy-hole, seriously affecting network performance and shortening its lifetime. To reduce data redundancy and avoid the generation of sensing blind areas, a type of Virtual Force based Energy-hole Mitigation strategy (VFEM) is proposed in this paper. Firstly, the virtual force (gravitation and repulsion) between nodes is introduced that makes nodes distribute as uniformly as possible. Secondly, in order to alleviate the "energy-hole problem", the network is divided into several annuluses with the same width. Then, another type of virtual force, named "virtual gravity generated by annulus", is proposed to further optimize the positions of nodes in each annulus. Finally, with the help of the "data forwarding area", the optimal paths for data uploading can be selected out, which effectively balances energy consumption of nodes. Experiment results show that, VFEM has a relatively good performance on postponing the generation time of energy-holes as well as prolonging the network lifetime compared with other typical energy-hole mitigation methods.
  •  
5.
  • Sha, Chao, et al. (författare)
  • Research on Cost-Balanced Mobile Energy Replenishment Strategy for Wireless Rechargeable Sensor Networks
  • 2020
  • Ingår i: IEEE Transactions on Vehicular Technology. - New York : IEEE. - 0018-9545 .- 1939-9359. ; 69:3, s. 3135-3150
  • Tidskriftsartikel (refereegranskat)abstract
    • In order to maximize the utilization rate of the Mobile Wireless Chargers (MWCs) and reduce the recharging delay in large-scale Rechargeable Wireless Sensor Networks (WRSNs), a type of C ost- B alanced M obile E nergy R eplenishment S trategy (CBMERS) is proposed in this paper. Firstly, nodes are assigned into groups according to their remaining lifetime, which ensures that only the ones with lower residual energy are recharged in each time slot. Then, to balance energy consumption among multiple MWCs, the moving distance as well as the power cost of the MWC are taken as constraints to get the optimal trajectory allocation scheme. Moreover, by further adjusting the amount of energy being replenished to some sensor nodes, it ensures that the MWC have enough energy to fulfill the recharging task and return back to the base station. Experiment results show that, compared with the Periodic recharging strategy and the C luster based M ultiple C harges C oordination algorithm (C-MCC), the proposed method can improve the recharging efficiency of MWCs by about 48.22% and 43.35%, and the average waiting time of nodes is also reduced by about 55.72% and 30.7%, respectively.
  •  
6.
  • Yu, Chao, 1988, et al. (författare)
  • CFP1 Regulates Histone H3K4 Trimethylation and Developmental Potential in Mouse Oocytes
  • 2017
  • Ingår i: Cell Rep. - : Elsevier BV. - 2211-1247. ; 20:5, s. 1161-1172
  • Tidskriftsartikel (refereegranskat)abstract
    • Trimethylation of histone H3 at lysine-4 (H3K4me3) is associated with eukaryotic gene promoters and poises their transcriptional activation during development. To examine the in vivo function of H3K4me3 in the absence of DNA replication, we deleted CXXC finger protein 1 (CFP1), the DNA-binding subunit of the SETD1 histone H3K4 methyltransferase, in developing oocytes. We find that CFP1 is required for H3K4me3 accumulation and the deposition of histone variants onto chromatin during oocyte maturation. Decreased H3K4me3 in oocytes caused global downregulation of transcription activity. Oocytes lacking CFP1 failed to complete maturation and were unable to gain developmental competence after fertilization, due to defects in cytoplasmic lattice formation, meiotic division, and maternal-zygotic transition. Our study highlights the importance of H3K4me3 in continuous histone replacement for transcriptional regulation, chromatin remodeling, and normal developmental progression in a non-replicative system.
  •  
Skapa referenser, mejla, bekava och länka
  • Resultat 1-6 av 6

Kungliga biblioteket hanterar dina personuppgifter i enlighet med EU:s dataskyddsförordning (2018), GDPR. Läs mer om hur det funkar här.
Så här hanterar KB dina uppgifter vid användning av denna tjänst.

 
pil uppåt Stäng

Kopiera och spara länken för att återkomma till aktuell vy