SwePub
Sök i SwePub databas

  Utökad sökning

Träfflista för sökning "WFRF:(Shakeri Manesh Sara) srt2:(2015)"

Sökning: WFRF:(Shakeri Manesh Sara) > (2015)

  • Resultat 1-2 av 2
Sortera/gruppera träfflistan
   
NumreringReferensOmslagsbildHitta
1.
  • Shakeri Manesh, Sara, 1982- (författare)
  • Role of MTH1 and MYH proteins in genotoxic effects of radiation
  • 2015
  • Doktorsavhandling (övrigt vetenskapligt/konstnärligt)abstract
    • Humans are constantly exposed to different types of radiations. It has been suggested that low dose and low dose rate of γ-radiation as well as ultra violet A (UVA) induce oxidative stress in cells that may promote mutations. The mechanisms behind radiation-induced oxidative stress and its relation to genotoxicity and cancer induction are not well understood. In the majority of investigations, the DNA molecule has been studied as the target for mutations, however the results obtained in our group point out that DNA bases in the cytoplasm could also be a significant target. MTH1 and MYH are two of the key proteins of the repair pathway that prevent mutations arising from oxidized DNA bases. In this thesis, we studied the role of MTH1 and MYH in genotoxicity of UVA and γ-radiation. The adaptive response to low dose rates of γ-radiation was also investigated. MTH1 and/or MYH were knockdown in human lymphoblastoid TK6 cells. The clonogenic survival, mutant frequency and chromosomal aberration assays were performed following UVA or γ-radiation exposure. Our results indicated that acute exposure to UVA or γ-radiation affects cell survival and also increases the mutant frequency above the background. The mutant frequency in MTH1 deficient cells was higher than that in wild types after UVA exposure. Following γ-radiation exposure, a higher mutant frequency was observed in the MYH and MTH1 deficient cells, in comparison to either MYH or MTH1 deficient or wild type cells. No dose rate effect of γ-radiation for mutations was observed. An adaptive response to γ-radiation was observed at the mutation level in MCF-10A cells but not at the survival level. In summary, our results suggest that; a) MYH and MTH1 cooperatively protect cells against genotoxic effects of γ-radiation; b) MTH1 protects cells from UVA-induced mutations; c) low dose rates of γ-radiation may induce an adaptive response at the mutation level; d) there is no dose rate effect for γ-radiation at the mutation level.
  •  
2.
  • Shakeri Manesh, Sara, et al. (författare)
  • Studies of adaptive response and mutation induction in MCF-10A cells following exposure to chronic or acute ionizing radiation
  • 2015
  • Ingår i: Mutation research. - : Elsevier BV. - 0027-5107 .- 1873-135X. ; 780, s. 55-59
  • Tidskriftsartikel (refereegranskat)abstract
    • A phenomenon in which exposure to a low adapting dose of radiation makes cells more resistant to the effects of a subsequent high dose exposure is termed radio-adaptive response. Adaptive response could hypothetically reduce the risk of late adverse effects of chronic or acute radiation exposures in humans. Understanding the underlying mechanisms of such responses is of relevance for radiation protection as well as for the clinical applications of radiation in medicine. However, due to the variability of responses depending on the model system and radiation condition, there is a need to further study under what conditions adaptive response can be induced. In this study, we analyzed if there is a dose rate dependence for the adapting dose, assuming that the adapting dose induces DNA response/repair pathways that are dose rate dependent. MCF-10A cells were exposed to a 50 mGy adapting dose administered acutely (0.40 Gy/min) or chronically (1.4 mGy/h or 4.1 mGy/h) and then irradiated by high acute challenging doses. The endpoints of study include clonogenic cell survival and mutation frequency at X-linked hprt locus. In another series of experiment, cells were exposed to 100 mGy and 1 Gy at different dose rates (acutely and chronically) and then the mutation frequencies were studied. Adaptive response was absent at the level of clonogenic survival. The mutation frequencies were significantly decreased in the cells pre-exposed to 50 mGy at 1.4 mGy/h followed by 1 Gy acute exposure as challenging dose. Importantly, at single dose exposures (1 Gy or 100 mGy), no differences at the level of mutation were found comparing different dose rates.
  •  
Skapa referenser, mejla, bekava och länka
  • Resultat 1-2 av 2

Kungliga biblioteket hanterar dina personuppgifter i enlighet med EU:s dataskyddsförordning (2018), GDPR. Läs mer om hur det funkar här.
Så här hanterar KB dina uppgifter vid användning av denna tjänst.

 
pil uppåt Stäng

Kopiera och spara länken för att återkomma till aktuell vy