SwePub
Sök i SwePub databas

  Utökad sökning

Träfflista för sökning "WFRF:(Shi Zhu) srt2:(2005-2009)"

Sökning: WFRF:(Shi Zhu) > (2005-2009)

  • Resultat 1-7 av 7
Sortera/gruppera träfflistan
   
NumreringReferensOmslagsbildHitta
1.
  •  
2.
  • Ding, Li, et al. (författare)
  • Somatic mutations affect key pathways in lung adenocarcinoma
  • 2008
  • Ingår i: Nature. - : Springer Science and Business Media LLC. - 0028-0836 .- 1476-4687. ; 455:7216, s. 1069-1075
  • Tidskriftsartikel (refereegranskat)abstract
    • Determining the genetic basis of cancer requires comprehensive analyses of large collections of histopathologically well-classified primary tumours. Here we report the results of a collaborative study to discover somatic mutations in 188 human lung adenocarcinomas. DNA sequencing of 623 genes with known or potential relationships to cancer revealed more than 1,000 somatic mutations across the samples. Our analysis identified 26 genes that are mutated at significantly high frequencies and thus are probably involved in carcinogenesis. The frequently mutated genes include tyrosine kinases, among them the EGFR homologue ERBB4; multiple ephrin receptor genes, notably EPHA3; vascular endothelial growth factor receptor KDR; and NTRK genes. These data provide evidence of somatic mutations in primary lung adenocarcinoma for several tumour suppressor genes involved in other cancers--including NF1, APC, RB1 and ATM--and for sequence changes in PTPRD as well as the frequently deleted gene LRP1B. The observed mutational profiles correlate with clinical features, smoking status and DNA repair defects. These results are reinforced by data integration including single nucleotide polymorphism array and gene expression array. Our findings shed further light on several important signalling pathways involved in lung adenocarcinoma, and suggest new molecular targets for treatment.
  •  
3.
  •  
4.
  • Ström, Anna-Lena, et al. (författare)
  • Interaction of amyotrophic lateral sclerosis (ALS)-related mutant copper-zinc superoxide dismutase with the dynein-dynactin complex contributes to inclusion formation.
  • 2008
  • Ingår i: Journal of Biological Chemistry. - 0021-9258 .- 1083-351X. ; 283:33, s. 22795-805
  • Tidskriftsartikel (refereegranskat)abstract
    • An important consequence of protein misfolding related to neurodegenerative diseases, including amyotrophic lateral sclerosis (ALS), is the formation of proteinaceous inclusions or aggregates within the central nervous system. We have previously shown that several familial ALS-linked copper-zinc superoxide dismutase (SOD1) mutants (A4V, G85R, and G93A) interact and co-localize with the dynein-dynactin complex in cultured cells and affected tissues of ALS mice. In this study, we report that the interaction between mutant SOD1 and the dynein motor plays a critical role in the formation of large inclusions containing mutant SOD1. Disruption of the motor by overexpression of the p50 subunit of dynactin in neuronal and non-neuronal cell cultures abolished the association between aggregation-prone SOD1 mutants and the dynein-dynactin complex. The p50 overexpression also prevented mutant SOD1 inclusion formation and improved the survival of cells expressing A4V SOD1. Furthermore, we observed that two ALS-linked SOD1 mutants, H46R and H48Q, which showed a lower propensity to interact with the dynein motor, also produced less aggregation and fewer large inclusions. Overall, these data suggest that formation of large inclusions depends upon association of the abnormal SOD1s with the dynein motor. Whether the misfolded SOD1s directly perturb axonal transport or impair other functional properties of the dynein motor, this interaction could propagate a toxic effect that ultimately causes motor neuron death in ALS.
  •  
5.
  • Ström, Anna-Lena, et al. (författare)
  • Retrograde axonal transport and motor neuron disease
  • 2008
  • Ingår i: Journal of Neurochemistry. - : Wiley. - 0022-3042 .- 1471-4159. ; 106:2, s. 495-505
  • Tidskriftsartikel (refereegranskat)abstract
    • Transport of material between extensive neuronal processes and the cell body is crucial for neuronal function and survival. Growing evidence shows that deficits in axonal transport contribute to the pathogenesis of multiple neurodegenerative diseases, including amyotrophic lateral sclerosis (ALS). Here we review recent data indicating that defects in dynein-mediated retrograde axonal transport are involved in ALS etiology. We discuss how mutant copper-zinc superoxide dismutase (SOD1) and an aberrant interaction between mutant SOD1 and dynein could perturb retrograde transport of neurotrophic factors and mitochondria. A possible contribution of axonal transport to the aggregation and degradation processes of mutant SOD1 is also reviewed. We further consider how the interference with axonal transport and protein turnover by mutant SOD1 could influence the function and viability of motor neurons in ALS.
  •  
6.
  • Yu, Bao-Zhu, et al. (författare)
  • Allosteric Effect of Amphiphile Binding to Phospholipase A2
  • 2009
  • Ingår i: Biochemistry. - : American Chemical Society (ACS). - 0006-2960 .- 1520-4995. ; 48:14, s. 3219-3229
  • Tidskriftsartikel (refereegranskat)abstract
    • In the preceding paper, we showed that the formation of the second premicellar complex of pig pancreatic IB phospholipase A2 (PLA2) can be considered a proxy for interface-activated substrate binding. Here we show that this conclusion is supported by results from premicellar;E-i(#) (i = 1, 2, or 3) complexes with a wide range of mutants of PLA2. Results also show a structural bass-for the correlated functional changes during the formation of E-2(#), and this is interpreted as an allosteric T (inactive) to R (active) transition. For example, the dissociation constant K-2(#) for decylsulfate bound to E-2(#) is lower at lower pH, at higher calcium concentrations, or with an inhibitor bound to the active site. Also, the lower limits of the K-2(#) values are comparable under these conditions. The pH-dependent increase in K-2(#) with a pK(a) of 6.5 is attributed to E71 which participates in the binding of the second calcium which in turn influences the enzyme binding to phosphatidylcholine interface. Most mutants exhibited kinetic and spectroscopic behavior that is comparable to that of native PLA2 and Delta PLA2 with a deleted 62-66 loop. However, the Delta Y52L substitution mutant cannot undergo the calcium-, pH-, or interface-dependent changes. We suggest that the Y52L substitution impairs the R to T transition and also hinders the approach of the Michaelis complex to the transition state. This allosteric change may be mediated by the structural motifs that connect the D48-D99 catalytic diad, the substrate-binding slot, and the residues of the i-face. Our interpretation is that the 57-72 loop and the H48DNCY52 segment of PLA2 are involved in transmitting the effect of the cooperative amphiphile binding to the i-face as a structural change in the active site.
  •  
7.
  • Yu, Bao-Zhu, et al. (författare)
  • Effect of Guggulsterone and Cembranoids of Commiphora mukul on Pancreatic Phospholipase A(2) : Role in Hypocholesterolemia
  • 2009
  • Ingår i: Journal of natural products (Print). - : American Chemical Society (ACS). - 0163-3864 .- 1520-6025. ; 72:1, s. 24-28
  • Tidskriftsartikel (refereegranskat)abstract
    • Guggulsterone (7) and cembranoids (8-12) from Commiphora mukul stem bark resin guggul were shown to be specific modulators of two independent sites that are also modulated by bile salts (1-6) to control cholesterol absorption and catabolism. Guggulsterone (7) antagonized the chenodeoxycholic acid (3)-activated nuclear farnesoid X receptor (FXR), which regulates cholesterol metabolism in the liver. The cembranoids did not show a noticeable effect on FXR, but lowered the cholate (I)-activated rate of human pancreatic 113 phospholipase A2 (hPLA2), which controls gastrointestinal absorption of fat and cholesterol. Analysis of the data using a kinetic model has suggested an allosteric mechanism for the rate increase of hPLA2 by cholate and also for the rate-lowering effect by certain bile salts or cembranoids on the cholate-activated hPLA2 hydrolysis of phosphatidylcholine vesicles. The allosteric inhibition of PLA2 by certain bile salts and cembranoids showed some structural specificity. Biophysical studies also showed specific interaction of the bile salts with the interface-bound cholate-activated PLA2. Since cholesterol homeostasis in mammals is regulated by FXR in the liver for metabolism and by PLA2 in the intestine for absorption, modulation of PLA2 and FXR by bile acids and selected guggul components suggests novel possibilities for hypolipidemic and hypocholesterolemic therapies.
  •  
Skapa referenser, mejla, bekava och länka
  • Resultat 1-7 av 7

Kungliga biblioteket hanterar dina personuppgifter i enlighet med EU:s dataskyddsförordning (2018), GDPR. Läs mer om hur det funkar här.
Så här hanterar KB dina uppgifter vid användning av denna tjänst.

 
pil uppåt Stäng

Kopiera och spara länken för att återkomma till aktuell vy