SwePub
Sök i SwePub databas

  Utökad sökning

Träfflista för sökning "WFRF:(Shtepliuk Ivan) srt2:(2016)"

Sökning: WFRF:(Shtepliuk Ivan) > (2016)

  • Resultat 1-5 av 5
Sortera/gruppera träfflistan
   
NumreringReferensOmslagsbildHitta
1.
  • Khranovskyy, Volodymyr, et al. (författare)
  • Light emission enhancement from ZnO nanostructured films grown on Gr/SiC substrates
  • 2016
  • Ingår i: Carbon. - : Pergamon Press. - 0008-6223 .- 1873-3891. ; 99, s. 295-301
  • Tidskriftsartikel (refereegranskat)abstract
    • We report on the application of a single layer graphene substrates for the growth of polycrystalline ZnO films with advanced light emission properties. Unusually high ultraviolet (UV) and visible (VIS) photoluminesce was observed from the ZnO/Gr/SiC structures in comparison to identical samples without graphene. The photoluminescence intensity depends non-monotonically on the films thickness, reaching its maximum for 150 nm thick films. The phenomena observed is explained as due to the dual graphene role: i) the dangling bond free substrate, providing growth of relaxed thin ZnO layers ii) a back reflector active mirror of the Fabry-Perot cavity that is formed. The reported results demonstrate the potential of two-dimensional carbon materials integration with light emitting wide band gap semiconductors and can be of practical importance for the design of future optoelectronic devices.
  •  
2.
  • Shavanova, Kateryna, et al. (författare)
  • Application of 2D Non-Graphene Materials and 2D Oxide Nanostructures for Biosensing Technology
  • 2016
  • Ingår i: Sensors. - : MDPI AG. - 1424-8220. ; 16:2
  • Forskningsöversikt (refereegranskat)abstract
    • The discovery of graphene and its unique properties has inspired researchers to try to invent other two-dimensional (2D) materials. After considerable research effort, a distinct "beyond graphene" domain has been established, comprising the library of non-graphene 2D materials. It is significant that some 2D non-graphene materials possess solid advantages over their predecessor, such as having a direct band gap, and therefore are highly promising for a number of applications. These applications are not limited to nano- and opto-electronics, but have a strong potential in biosensing technologies, as one example. However, since most of the 2D non-graphene materials have been newly discovered, most of the research efforts are concentrated on material synthesis and the investigation of the properties of the material. Applications of 2D non-graphene materials are still at the embryonic stage, and the integration of 2D non-graphene materials into devices is scarcely reported. However, in recent years, numerous reports have blossomed about 2D material-based biosensors, evidencing the growing potential of 2D non-graphene materials for biosensing applications. This review highlights the recent progress in research on the potential of using 2D non-graphene materials and similar oxide nanostructures for different types of biosensors (optical and electrochemical). A wide range of biological targets, such as glucose, dopamine, cortisol, DNA, IgG, bisphenol, ascorbic acid, cytochrome and estradiol, has been reported to be successfully detected by biosensors with transducers made of 2D non-graphene materials.
  •  
3.
  • Shtepliuk, Ivan, et al. (författare)
  • Effect of c-axis inclination angle on the properties of ZnO/Zn1-xCdxO/ZnO quantum wells
  • 2016
  • Ingår i: Thin Solid Films. - : ELSEVIER SCIENCE SA. - 0040-6090 .- 1879-2731. ; 603, s. 139-148
  • Tidskriftsartikel (refereegranskat)abstract
    • The development of optoelectronic devices based on highly-promising Zn1 - xCdxO semiconductor system demands deep understanding of the properties of the Zn1 - xCdxO-based quantum wells (QWs). In this regard, we carried out a numerical study of the polarization-related effects in polar, semi-polar and non-polar ZnO/ Zn1 - xCd xO/ZnO QWs with different parameters of the quantum well structure. The effects of well width, barrier thickness, cadmium content in the active layer and c-axis inclination angle on the distribution of the electron and hole wave function and transition energy were investigated using the 6 x 6 k center dot p Hamiltonian and one-dimensional self-consistent solutions of nonlinear Schrodinger-Poisson equations with consideration of spatially varying dielectric constant and effective mass. The strong sensitivity of the internal electric field, transition energy and overlap integral to cadmium content and well thickness in the angle range from 0 to 40 degrees was revealed. An unexpected change of the internal electric fields sign was observed at the angles ranging from 70 to 90 degrees. We also found a difference in the electronic properties between (0001)-, (11 (2) over bar2)-and (10 (1) over bar0)-oriented QWs.
  •  
4.
  • Shtepliuk, Ivan I., 1987-, et al. (författare)
  • Combining graphene with silicon carbide: synthesis and properties - a review
  • 2016
  • Ingår i: Semiconductor Science and Technology. - : IOP PUBLISHING LTD. - 0268-1242 .- 1361-6641. ; 31:11, s. 113004-
  • Forskningsöversikt (refereegranskat)abstract
    • Being a true two-dimensional crystal, graphene possesses a lot of exotic properties that would enable unique applications. Integration of graphene with inorganic semiconductors, e.g. silicon carbide (SiC) promotes the birth of a class of hybrid materials which are highly promising for development of novel operations, since they combine the best properties of two counterparts in the frame of one hybrid platform. As a specific heterostructure, graphene on SiC performs strongly, dependent on the synthesis method and the growth modes. In this article, a comprehensive review of the most relevant studies of graphene growth methods and mechanisms on SiC substrates has been carried out. The aim is to elucidate the basic physical processes that are responsible for the formation of graphene on SiC. First, an introduction is made covering some intriguing and not so often discussed properties of graphene. Then, we focus on integration of graphene with SiC, which is facilitated by the nature of SiC to assume graphitization. Concerning the synthesis methods, we discuss thermal decomposition of SiC, chemical vapor deposition and molecular beam epitaxy, stressing that the first technique is the most common one when SiC substrates are used. In addition, we briefly appraise graphene synthesis via metal mediated carbon segregation. We address in detail the main aspects of the substrate effect, such as substrate face polarity, off-cut, kind of polytype and nonpolar surfaces on the growth of graphene layers. A comparison of graphene grown on the polar faces is made. In particular, growth of graphene on Si-face SiC is critically analyzed concerning growth kinetics and growth mechanisms taking into account the specific characteristics of SiC (0001) surfaces, such as the step-terrace structure and the unavoidable surface reconstruction upon heating. In all subtopics obstacles and solutions are featured. We complete the review with a short summary and concluding remarks.
  •  
5.
  • Shtepliuk, Ivan, et al. (författare)
  • Monolayer graphene/SiC Schottky barrier diodes with improved barrier height uniformity as a sensing platform for the detection of heavy metals
  • 2016
  • Ingår i: Beilstein Journal of Nanotechnology. - : BEILSTEIN-INSTITUT. - 2190-4286. ; 7, s. 1800-1814
  • Tidskriftsartikel (refereegranskat)abstract
    • A vertical diode structure comprising homogeneous monolayer epitaxial graphene on silicon carbide is fabricated by thermal decomposition of a Si-face 4H-SiC wafer in argon atmosphere. Current-voltage characteristics of the graphene/SiC Schottky junction were analyzed by applying the thermionic-emission theory. Extracted values of the Schottky barrier height and the ideality factor are found to be 0.4879 +/- 0.013 eV and 1.01803 +/- 0.0049, respectively. Deviations of these parameters from average values are smaller than those of previously observed literature data, thereby implying uniformity of the Schottky barrier height over the whole diode area, a stable rectifying behaviour and a good quality of ohmic palladium-graphene contacts. Keeping in mind the strong sensitivity of graphene to analytes we propose the possibility to use the graphene/SiC Schottky diode as a sensing platform for the recognition of toxic heavy metals. Using density functional theory (DFT) calculations we gain insight into the nature of the interaction of cadmium, mercury and lead with graphene as well as estimate the work function and the Schottky barrier height of the graphene/SiC structure before and after applying heavy metals to the sensing material. A shift of the I-V characteristics of the graphene/SiC-based sensor has been proposed as an indicator of presence of the heavy metals. Since the calculations suggested the strongest charge transfer between Pb and graphene, the proposed sensing platform was characterized by good selectivity towards lead atoms and slight interferences from cadmium and mercury. The dependence of the sensitivity parameters on the concentration of Cd, Hg and Pb is studied and discussed.
  •  
Skapa referenser, mejla, bekava och länka
  • Resultat 1-5 av 5

Kungliga biblioteket hanterar dina personuppgifter i enlighet med EU:s dataskyddsförordning (2018), GDPR. Läs mer om hur det funkar här.
Så här hanterar KB dina uppgifter vid användning av denna tjänst.

 
pil uppåt Stäng

Kopiera och spara länken för att återkomma till aktuell vy