SwePub
Sök i SwePub databas

  Utökad sökning

Träfflista för sökning "WFRF:(Spühler Jeannette Hiromi) srt2:(2017)"

Sökning: WFRF:(Spühler Jeannette Hiromi) > (2017)

  • Resultat 1-3 av 3
Sortera/gruppera träfflistan
   
NumreringReferensOmslagsbildHitta
1.
  • Hoffman, Johan, et al. (författare)
  • FEniCS-HPC: Coupled Multiphysics in Computational Fluid Dynamics
  • 2017
  • Ingår i: High-Performance Scientific Computing. - Cham : Springer. - 9783319538617 - 9783319538624 ; , s. 58-69
  • Konferensbidrag (refereegranskat)abstract
    • We present a framework for coupled multiphysics in computational fluid dynamics, targeting massively parallel systems. Our strategy is based on general problem formulations in the form of partial differential equations and the finite element method, which open for automation, and optimization of a set of fundamental algorithms. We describe these algorithms, including finite element matrix assembly, adaptive mesh refinement and mesh smoothing; and multiphysics coupling methodologies such as unified continuum fluid-structure interaction (FSI), and aeroacoustics by coupled acoustic analogies. The framework is implemented as FEniCS open source software components, optimized for massively parallel computing. Examples of applications are presented, including simulation of aeroacoustic noise generated by an airplane landing gear, simulation of the blood flow in the human heart, and simulation of the human voice organ.
  •  
2.
  • Larsson, David, et al. (författare)
  • Patient-Specific Left Ventricular Flow Simulations From Transthoracic Echocardiography : Robustness Evaluation and Validation Against Ultrasound Doppler and Magnetic Resonance Imaging
  • 2017
  • Ingår i: IEEE Transactions on Medical Imaging. - : Institute of Electrical and Electronics Engineers (IEEE). - 0278-0062 .- 1558-254X. ; 36:11, s. 2261-2275
  • Tidskriftsartikel (refereegranskat)abstract
    • The combination of medical imaging with computational fluid dynamics (CFD) has enabled the study of 3D blood flow on a patient-specificlevel. However, with models based on gated high-resolution data, the study of transient flows, and any model implementation into routine cardiac care, is challenging. The present paper presents a novel pathway for patient-specific CFD modelling of the left ventricle (LV), using 4D transthoracic echocardiography (TTE) as input modality. To evaluate the clinical usability, two sub-studies were performed. First, a robustness evaluation was performed where repeated models with alternating input variables were generated for 6 subjects and changes in simulated output quantified. Second, a validation study was carried out where the pathway accuracy was evaluated against pulsed-wave Doppler (100 subjects), and 2D through-plane phase-contrast magnetic resonance imaging measurements over 7 intraventricular planes (6 subjects). The robustness evaluation indicated a model deviation of <12%, with highest regional and temporal deviations at apical segments and at peak systole, respectively. The validation study showed an error of < 11% (velocities < 10 cm/s) for all subjects, with no significant regional or temporal differences observed. With the patient-specific pathway shown to provide robust output with high accuracy, and with the pathway dependent only on 4DTTE, the method has a high potential to be used within future clinical studies on 3D intraventricular flowpatterns. To this, future model developments in the form of e.g. anatomically accurate LV valves may further enhance the clinical value of the simulations.
  •  
3.
  • Spühler, Jeannette Hiromi, 1981- (författare)
  • Patient-Specific Finite Element Modeling of the Blood Flow in the Left Ventricle of a Human Heart
  • 2017
  • Doktorsavhandling (övrigt vetenskapligt/konstnärligt)abstract
    • Heart disease is the leading cause of death in the world. Therefore, numerous studies are undertaken to identify indicators which can be applied to discover cardiac dysfunctions at an early age. Among others, the fluid dynamics of the blood flow (hemodymanics) is considered to contain relevant information related to abnormal performance of the heart.This thesis presents a robust framework for numerical simulation of the fluid dynamics of the blood flow in the left ventricle of a human heart and the fluid-structure interaction of the blood and the aortic leaflets.We first describe a patient-specific model for simulating the intraventricular blood flow. The motion of the endocardial wall is extracted from data acquired with medical imaging and we use the incompressible Navier-Stokes equations to model the hemodynamics within the chamber. We set boundary conditions to model the opening and closing of the mitral and aortic valves respectively, and we apply a stabilized Arbitrary Lagrangian-Eulerian (ALE) space-time finite element method to simulate the blood flow. Even though it is difficult to collect in-vivo data for validation, the available data and results from other simulation models indicate that our approach possesses the potential and capability to provide relevant information about the intraventricular blood flow.To further demonstrate the robustness and clinical feasibility of our model, a semi-automatic pathway from 4D cardiac ultrasound imaging to patient-specific simulation of the blood flow in the left ventricle is developed. The outcome is promising and further simulations and analysis of large data sets are planned.In order to enhance our solver by introducing additional features, the fluid solver is extended by embedding different geometrical prototypes of both a native and a mechanical aortic valve in the outflow area of the left ventricle.Both, the contact as well as the fluid-structure interaction, are modeled as a unified continuum problem using conservation laws for mass and momentum. To use this ansatz for simulating the valvular dynamics is unique and has the expedient properties that the whole problem can be described with partial different equations and the same numerical methods for discretization are applicable.All algorithms are implemented in the high performance computing branch of Unicorn, which is part of the open source software framework FEniCS-HPC. The strong advantage of implementing the solvers in an open source software is the accessibility and reproducibility of the results which enhance the prospects of developing a method with clinical relevance.
  •  
Skapa referenser, mejla, bekava och länka
  • Resultat 1-3 av 3

Kungliga biblioteket hanterar dina personuppgifter i enlighet med EU:s dataskyddsförordning (2018), GDPR. Läs mer om hur det funkar här.
Så här hanterar KB dina uppgifter vid användning av denna tjänst.

 
pil uppåt Stäng

Kopiera och spara länken för att återkomma till aktuell vy