SwePub
Sök i SwePub databas

  Utökad sökning

Träfflista för sökning "WFRF:(Spender James) srt2:(2020-2024)"

Sökning: WFRF:(Spender James) > (2020-2024)

  • Resultat 1-4 av 4
Sortera/gruppera träfflistan
   
NumreringReferensOmslagsbildHitta
1.
  • Aslandukov, Andrey, et al. (författare)
  • Synthesis of LaCN3, TbCN3, CeCN5, and TbCN5 Polycarbonitrides at Megabar Pressures
  • 2024
  • Ingår i: Journal of the American Chemical Society. - : AMER CHEMICAL SOC. - 0002-7863 .- 1520-5126. ; 146:26, s. 18161-18171
  • Tidskriftsartikel (refereegranskat)abstract
    • Inorganic ternary metal-C-N compounds with covalently bonded C-N anions encompass important classes of solids such as cyanides and carbodiimides, well known at ambient conditions and composed of [CN](-) and [CN2](2-) anions, as well as the high-pressure formed guanidinates featuring [CN3](5-) anion. At still higher pressures, carbon is expected to be 4-fold coordinated by nitrogen atoms, but hitherto, such CN4-built anions are missing. In this study, four polycarbonitride compounds (LaCN3, TbCN3, CeCN5, and TbCN5) are synthesized in laser-heated diamond anvil cells at pressures between 90 and 111 GPa. Synchrotron single-crystal X-ray diffraction (SCXRD) reveals that their crystal structures are built of a previously unobserved anionic single-bonded carbon-nitrogen three-dimensional (3D) framework consisting of CN4 tetrahedra connected via di- or oligo-nitrogen linkers. A crystal-chemical analysis demonstrates that these polycarbonitride compounds have similarities to lanthanide silicon phosphides. Decompression experiments reveal the existence of LaCN3 and CeCN5 compounds over a very large pressure range. Density functional theory (DFT) supports these discoveries and provides further insight into the stability and physical properties of the synthesized compounds.
  •  
2.
  • Koller, Thaddaeus J., et al. (författare)
  • Simple Molecules under High-Pressure and High-Temperature Conditions: Synthesis and Characterization of α- and β-C(NH)2 with Fully sp3-Hybridized Carbon
  • 2024
  • Ingår i: Angewandte Chemie International Edition. - : WILEY-V C H VERLAG GMBH. - 1433-7851 .- 1521-3773.
  • Tidskriftsartikel (refereegranskat)abstract
    • The elements hydrogen, carbon, and nitrogen are among the most abundant in the solar system. Still, little is known about the ternary compounds these elements can form under the high-pressure and high-temperature conditions found in the outer planets' interiors. These materials are also of significant research interest since they are predicted to feature many desirable properties such as high thermal conductivity and hardness due to strong covalent bonding networks. In this study, the high-pressure high-temperature reaction behavior of malononitrile H2C(CN)(2), dicyandiamide (H2N)(2)C=NCN, and melamine (C3N3)(NH2)(3) was investigated in laser-heated diamond anvil cells. Two previously unknown compounds, namely alpha-C(NH)(2) and beta-C(NH)(2), have been synthesized and found to have fully sp(3)-hybridized carbon atoms. alpha-C(NH)(2) crystallizes in a distorted beta-cristobalite structure, while beta-C(NH)(2) is built from previously unknown imide-bridged 2,4,6,8,9,10-hexaazaadamantane units, which form two independent interpenetrating diamond-like networks. Their stability domains and compressibility were studied, for which supporting density functional theory calculations were performed.
  •  
3.
  •  
4.
  • Liang, Akun, et al. (författare)
  • High-Pressure Synthesis of Ultra-Incompressible, Hard and Superconducting Tungsten Nitrides
  • 2024
  • Ingår i: Advanced Functional Materials. - : WILEY-V C H VERLAG GMBH. - 1616-301X .- 1616-3028.
  • Tidskriftsartikel (refereegranskat)abstract
    • Transition metal nitrides, particularly those of 5d metals, are known for their outstanding properties, often relevant for industrial applications. Among these metal elements, tungsten is especially attractive given its low cost. In this high-pressure investigation of the W-N system, two novel ultra-incompressible tungsten nitride superconductors, namely W2N3 and W3N5, are successfully synthesized at 35 and 56 GPa, respectively, through a direct reaction between N2 and W in laser-heated diamond anvil cells. Their crystal structure is determined using synchrotron single-crystal X-ray diffraction. While the W2N3 solid's sole constituting nitrogen species are N3- units, W3N5 features both discrete N3- as well as N24- pernitride anions. The bulk modulus of W2N3 and W3N5 is experimentally determined to be 380(3) and 406(7) GPa, and their ultra-incompressible behavior is rationalized by their constituting WN7 polyhedra and their linkages. Importantly, both W2N3 and W3N5 are recoverable to ambient conditions and stable in air. Density functional theory calculations reveal W2N3 and W3N5 to have a Vickers hardness of 30 and 34 GPa, and superconducting transition temperatures at ambient pressure (50 GPa) of 11.6 K (9.8 K) and 9.4 K (7.2 K), respectively. Additionally, transport measurements performed at 50 GPa on W2N3 corroborate with the calculations. Two recoverable tungsten nitrides, namely W2N3 and W3N5, are synthesized using laser-heated diamond anvil cells. Both compounds exhibit a high bulk modulus, hardness, and superconducting transition temperature. image
  •  
Skapa referenser, mejla, bekava och länka
  • Resultat 1-4 av 4

Kungliga biblioteket hanterar dina personuppgifter i enlighet med EU:s dataskyddsförordning (2018), GDPR. Läs mer om hur det funkar här.
Så här hanterar KB dina uppgifter vid användning av denna tjänst.

 
pil uppåt Stäng

Kopiera och spara länken för att återkomma till aktuell vy