SwePub
Sök i SwePub databas

  Utökad sökning

Träfflista för sökning "WFRF:(Stefanescu C) srt2:(2020-2022)"

Sökning: WFRF:(Stefanescu C) > (2020-2022)

  • Resultat 1-4 av 4
Sortera/gruppera träfflistan
   
NumreringReferensOmslagsbildHitta
1.
  • Pellissier, V., et al. (författare)
  • Effects of Natura 2000 on nontarget bird and butterfly species based on citizen science data
  • 2020
  • Ingår i: Conservation Biology. - : Wiley. - 0888-8892 .- 1523-1739. ; 34:3, s. 666-676
  • Tidskriftsartikel (refereegranskat)abstract
    • The European Union's Natura 2000 (N2000) is among the largest international networks of protected areas. One of its aims is to secure the status of a predetermined set of (targeted) bird and butterfly species. However, nontarget species may also benefit from N2000. We evaluated how the terrestrial component of this network affects the abundance of nontargeted, more common bird and butterfly species based on data from long-term volunteer-based monitoring programs in 9602 sites for birds and 2001 sites for butterflies. In almost half of the 155 bird species assessed, and particularly among woodland specialists, abundance increased (slope estimates ranged from 0.101 [SD 0.042] to 3.51 [SD 1.30]) as the proportion of landscape covered by N2000 sites increased. This positive relationship existed for 27 of the 104 butterfly species (estimates ranged from 0.382 [SD 0.163] to 4.28 [SD 0.768]), although most butterflies were generalists. For most species, when land-cover covariates were accounted for these positive relationships were not evident, meaning land cover may be a determinant of positive effects of the N2000 network. The increase in abundance as N2000 coverage increased correlated with the specialization index for birds, but not for butterflies. Although the N2000 network supports high abundance of a large spectrum of species, the low number of specialist butterflies with a positive association with the N2000 network shows the need to improve the habitat quality of N2000 sites that could harbor open-land butterfly specialists. For a better understanding of the processes involved, we advocate for standardized collection of data at N2000 sites.
  •  
2.
  •  
3.
  • Messi, F., et al. (författare)
  • The neutron-tagging facility at Lund University
  • 2020
  • Ingår i: Modern Neutron Detection : Proceedings of a Technical Meeting - Proceedings of a Technical Meeting. - 1011-4289. - 9789201265203 - 9789201266200 ; :1935, s. 287-297
  • Konferensbidrag (övrigt vetenskapligt/konstnärligt)abstract
    • Over the last decades, the field of thermal neutron detection has overwhelmingly employed He-3-based technologies. The He-3 crisis together with the forthcoming establishment of the European Spallation Source have necessitated the development of new technologies for neutron detection. Today, several promising He-3-free candidates are under detailed study and need to be validated. This validation process is in general long and expensive. The study of detector prototypes using neutron-emitting radioactive sources is a cost-effective solution, especially for preliminary investigations. That said, neutron-emitting sources have the general disadvantage of broad, structured, emitted-neutron energy ranges. Further, the emitted neutrons often compete with unwanted backgrounds of gamma-rays, alpha-particles, and fission-fragments. By blending experimental infrastructure such as shielding to provide particle beams with neutron-detection techniques such as tagging, disadvantages may be converted into advantages. In particular, a technique known as tagging involves exploiting the mixed-field generally associated with a neutron-emitting source to determine neutron time-of-flight and thus energy on an event-by-event basis. This allows for the definition of low-cost, precision neutron beams. The Source-Testing Facility, located at Lund University in Sweden and operated by the SONNIG Group of the Division of Nuclear Physics, was developed for just such low-cost studies. Precision tagged-neutron beams derived from radioactive sources are available around-the-clock for advanced detector diagnostic studies. Neutron measurements performed at the Source Testing Facility are thus cost-effective and have a very low barrier for entry. In this paper, we present an overview of the project.
  •  
4.
  •  
Skapa referenser, mejla, bekava och länka
  • Resultat 1-4 av 4

Kungliga biblioteket hanterar dina personuppgifter i enlighet med EU:s dataskyddsförordning (2018), GDPR. Läs mer om hur det funkar här.
Så här hanterar KB dina uppgifter vid användning av denna tjänst.

 
pil uppåt Stäng

Kopiera och spara länken för att återkomma till aktuell vy