SwePub
Sök i SwePub databas

  Utökad sökning

Träfflista för sökning "WFRF:(Stegmayr John) srt2:(2022)"

Sökning: WFRF:(Stegmayr John) > (2022)

  • Resultat 1-4 av 4
Sortera/gruppera träfflistan
   
NumreringReferensOmslagsbildHitta
1.
  • Alsafadi, Hani N, et al. (författare)
  • Simultaneous isolation of proximal and distal lung progenitor cells from individual mice using a 3D printed guide reduces proximal cell contamination of distal lung epithelial cell isolations
  • 2022
  • Ingår i: Stem Cell Reports. - : Elsevier BV. - 2213-6711. ; 17:12, s. 2718-2731
  • Tidskriftsartikel (refereegranskat)abstract
    • The respiratory epithelium consists of multiple, functionally distinct cell types and is maintained by regionally specific progenitor populations that repair the epithelium following injury. Several in vitro methods exist for studying lung epithelial repair using primary murine lung cells, but isolation methods are hampered by a lack of surface markers distinguishing epithelial progenitors along the respiratory epithelium. Here, we developed a 3D printed lobe divider (3DLD) to aid in simultaneous isolation of proximal versus distal lung epithelial progenitors from individual mice that give rise to differentiated epithelia in multiple in vitro assays. In contrast to 3DLD-isolated distal progenitor cells, commonly used manual tracheal ligation methods followed by lobe removal resulted in co-isolation of rare proximal cells with distal cells, which altered the transcriptional landscape and size distribution of distal organoids. The 3DLD aids in reproducible isolation of distal versus proximal progenitor populations and minimizes the potential for contaminating populations to confound in vitro assays.
  •  
2.
  • Langwiński, Wojciech, et al. (författare)
  • Allergic inflammation in lungs and nasal epithelium of rat model is regulated by tissue-specific miRNA expression
  • 2022
  • Ingår i: Molecular Immunology. - : Elsevier BV. - 0161-5890. ; 147, s. 115-125
  • Tidskriftsartikel (refereegranskat)abstract
    • Introduction: Atopic asthma and allergic rhinitis are common chronic inflammatory diseases affecting lower airways and nasal mucosa, respectively. Several reports demonstrated frequent co-occurrence of these two diseases, however, the exact molecular mechanism has not been described. The present study aimed to investigate if small non-coding RNA might be responsible for the co-occurrence of asthma and allergic rhinitis in an animal model of allergic airway inflammation. Materials and methods: As an in vivo model of allergic airway inflammation, we used Brown Norway rats exposed intranasally to house dust mite (HDM). Histological analysis, total IgE concentration, eosinophil counts and iNOS gene expression were determined to confirm inflammatory changes. Small RNA sequencing in the lung tissue and nasal epithelium was performed with TruSeq Small RNA Library Preparation Kit and analyzed using the BaseSpace tool. Validation of sequencing results was performed using qPCR. To assess the functional role of hsa-miR-223–3p, we transfected normal human bronchial epithelial (NHBE) cells with specific LNA-inhibitor and measured phosphorylated protein level of NF-kB with ELISA. Expression analysis of NF-kB pathway-related genes was performed using qPCR with SYBR Green and analyzed in DataAssist v3.01. Statistical analysis were done with STATISTICA version 13. Results: We found 9 miRNA genes differentially expressed in the lungs of allergic rats. In nasal epithelium, only rno-miR-184 was upregulated in animals exposed to HDM. Validation with qPCR confirmed increased expression only for rno-miR-223–3p in the lungs from allergic rats. The expression of this miRNA was also increased in normal bronchial epithelial ALI cell culture stimulated with IL-13, but not in cells cultured in monolayer due to the low mRNA level of IL13RA1 and IL13RA2. Transfecting NHBE cells with hsa-miR-223–3p inhibitor increased the amount of phosphorylated NF-kB protein level and expression of MUC5AC, CCL24 and TSLP genes. Conclusions: These findings suggest that miRNAs that regulate allergic inflammation in the lungs and nasal epithelium are specific for upper and lower airways. Furthermore, our study provides new insight on the role of hsa-miR-223–3p, that via targeting NF-kB signaling pathway, regulates the expression of MUC5AC, CCL24 and TSLP. Taken together, our study suggests that miR-223–3p is a regulator of allergic inflammation and could potentially be used to develop novel and targeted therapy for asthma.
  •  
3.
  • Nielsen, Morten Aagaard, et al. (författare)
  • Galectin-3 Decreases 4-1BBL Bioactivity by Crosslinking Soluble and Membrane Expressed 4-1BB
  • 2022
  • Ingår i: Frontiers in Immunology. - : Frontiers Media SA. - 1664-3224. ; 13
  • Tidskriftsartikel (refereegranskat)abstract
    • 4-1BB is a T cell costimulatory receptor and a member of the tumor necrosis factor receptor superfamily. Here, we show that Galectin-3 (Gal-3) decreases the cellular response to its ligand (4-1BBL). Gal-3 binds to both soluble 4-1BB (s4-1BB) and membrane-bound 4-1BB (mem4-1BB), without blocking co-binding of 4-1BBL. In plasma, we detected complexes composed of 4-1BB and Gal-3 larger than 100 nm in size; these complexes were reduced in synovial fluid from rheumatoid arthritis. Both activated 4-1BB+ T cells and 4-1BB-transfected HEK293 cells depleted these complexes from plasma, followed by increased expression of 4-1BB and Gal-3 on the cell surface. The increase was accompanied by a 4-fold decrease in TNFα production by the 4-1BBhighGal-3+ T cells, after exposure to 4-1BB/Gal-3 complexes. In RA patients, complexes containing 4-1BB/Gal-3 were dramatically reduced in both plasma and SF compared with healthy plasma. These results support that Gal-3 binds to 4-1BB without blocking the co-binding of 4-1BBL. Instead, Gal-3 leads to formation of large soluble 4-1BB/Gal-3 complexes that attach to mem4-1BB on the cell surfaces, resulting in suppression of 4-1BBL’s bioactivity.
  •  
4.
  • Wasserstrom, Sebastian, et al. (författare)
  • Model visualization : from micro to macro
  • 2022
  • Ingår i: 3D lung models for regenerating lung tissue. - 9780323908719 ; , s. 207-221
  • Bokkapitel (refereegranskat)abstract
    • Because of increasing demand, rapid development of in vitro and in vivo models to be used to study lung regeneration and lung repair has occurred during the last years. Even if imaging has always been an important tool in diagnosing disease and validating models, the current disease models, including three-dimensional (3D) lung models, put a higher demand on advanced imaging techniques. Moreover, choosing the most relevant technique for a specific question is not a trivial task, and the rapid development of new techniques has not made this task easier. Therefore the aim of this chapter is to provide an overview of different advanced imaging techniques that can be used to evaluate and validate 3D lung models, to provide a discussion on the current state of the art, and to list the pros and cons of the available techniques.
  •  
Skapa referenser, mejla, bekava och länka
  • Resultat 1-4 av 4

Kungliga biblioteket hanterar dina personuppgifter i enlighet med EU:s dataskyddsförordning (2018), GDPR. Läs mer om hur det funkar här.
Så här hanterar KB dina uppgifter vid användning av denna tjänst.

 
pil uppåt Stäng

Kopiera och spara länken för att återkomma till aktuell vy