SwePub
Sök i SwePub databas

  Utökad sökning

Träfflista för sökning "WFRF:(Storry Jill R.) srt2:(2010-2014)"

Sökning: WFRF:(Storry Jill R.) > (2010-2014)

  • Resultat 1-4 av 4
Sortera/gruppera träfflistan
   
NumreringReferensOmslagsbildHitta
1.
  • Svensson, Lola, 1948, et al. (författare)
  • Forssman expression on human erythrocytes: biochemical and genetic evidence of a new histo-blood group system
  • 2013
  • Ingår i: Blood. - : American Society of Hematology. - 0006-4971 .- 1528-0020. ; 121:8, s. 1459-68
  • Tidskriftsartikel (refereegranskat)abstract
    • Abstract In analogy with histo-blood group A antigen, Forssman (Fs) antigen terminates with α3-N-acetylgalactosamine and can be utilized by pathogens as a host receptor in many mammals. However, primates including humans lack Fs synthase activity and have naturally-occurring Fs antibodies in plasma. We investigated individuals with the enigmatic ABO subgroup Apae and found them to be homozygous for common O alleles. Their erythrocytes had no A antigens but instead expressed Fs glycolipids. The unexpected Fs antigen was confirmed in structural, serological and flowcytometric studies. The Fs synthase gene, GBGT1, in Apae individuals encoded an arginine to glutamine change at residue 296. Gln296 is present in lower mammals whereas Arg296 was found in six other primates, >250 blood donors and Apae family relatives without the Apae phenotype. Transfection experiments and molecular modelling showed that 296Gln reactivates the human Fs synthase. Uropathogenic E.coli containing prsG-adhesin-encoding plasmids agglutinated Apae but not group O cells, suggesting biological implications. Predictive tests for intravascular hemolysis with crossmatch-incompatible sera indicated complement-mediated destruction of Fspositive erythrocytes. Taken together, we provide the first conclusive description of Fs expression in normal human hematopoietic tissue and the basis of a new histo-blood group system in man, FORS.
  •  
2.
  •  
3.
  •  
4.
  • Sjöberg Wester, Elisabet, et al. (författare)
  • KEL*02 alleles with alterations in and around exon 8 in individuals with apparent KEL:1,-2 phenotypes.
  • 2010
  • Ingår i: Vox Sanguinis. - : Wiley. - 1423-0410 .- 0042-9007. ; May 4, s. 150-157
  • Tidskriftsartikel (refereegranskat)abstract
    • Background and Objectives Antibodies to antigens in the Kell blood group system, especially anti-KEL1, are involved in both haemolytic disease of the newborn and foetus and haemolytic transfusion reactions. Correct typing results are important and discrepancies between serologic and genetic typing must be resolved. Here, we describe the investigation of three healthy individuals who were initially phenotyped as KEL:1,-2. Materials and Methods Antigen typing was performed by standard serological techniques and by flow cytometric analysis. The KEL*01/02 polymorphism was tested by an allele-discrimination TaqMan assay as well as by PCR with allele-specific primers and PCR-RFLP. DNA sequencing of the KEL coding region was also performed. Results Two KEL*02N alleles with mutated splice sites around exon 8 were identified: intron 7 -1g>c (novel) and intron 8 +1g>t (previously reported in one case of K(0)). In the third sample, a missense mutation in exon 8, 787G>A (novel) predicting Gly263Arg, was detected on a KEL*02 allele and associated with dramatically weakened KEL2 antigen expression. Conclusion Resolution of discrepant phenotype/genotype results identified silencing mutations in or around exon 8. A combination of molecular and serologic methods has the potential to improve the quality of test results and was required to ensure both the accurate KEL2 antigen status and KEL*01 zygosity of these individuals.
  •  
Skapa referenser, mejla, bekava och länka
  • Resultat 1-4 av 4

Kungliga biblioteket hanterar dina personuppgifter i enlighet med EU:s dataskyddsförordning (2018), GDPR. Läs mer om hur det funkar här.
Så här hanterar KB dina uppgifter vid användning av denna tjänst.

 
pil uppåt Stäng

Kopiera och spara länken för att återkomma till aktuell vy