SwePub
Sök i SwePub databas

  Extended search

Träfflista för sökning "WFRF:(Strait M.) srt2:(2020-2024)"

Search: WFRF:(Strait M.) > (2020-2024)

  • Result 1-9 of 9
Sort/group result
   
EnumerationReferenceCoverFind
1.
  • Fenstermacher, M.E., et al. (author)
  • DIII-D research advancing the physics basis for optimizing the tokamak approach to fusion energy
  • 2022
  • In: Nuclear Fusion. - : IOP Publishing. - 0029-5515 .- 1741-4326. ; 62:4
  • Journal article (peer-reviewed)abstract
    • DIII-D physics research addresses critical challenges for the operation of ITER and the next generation of fusion energy devices. This is done through a focus on innovations to provide solutions for high performance long pulse operation, coupled with fundamental plasma physics understanding and model validation, to drive scenario development by integrating high performance core and boundary plasmas. Substantial increases in off-axis current drive efficiency from an innovative top launch system for EC power, and in pressure broadening for Alfven eigenmode control from a co-/counter-I p steerable off-axis neutral beam, all improve the prospects for optimization of future long pulse/steady state high performance tokamak operation. Fundamental studies into the modes that drive the evolution of the pedestal pressure profile and electron vs ion heat flux validate predictive models of pedestal recovery after ELMs. Understanding the physics mechanisms of ELM control and density pumpout by 3D magnetic perturbation fields leads to confident predictions for ITER and future devices. Validated modeling of high-Z shattered pellet injection for disruption mitigation, runaway electron dissipation, and techniques for disruption prediction and avoidance including machine learning, give confidence in handling disruptivity for future devices. For the non-nuclear phase of ITER, two actuators are identified to lower the L-H threshold power in hydrogen plasmas. With this physics understanding and suite of capabilities, a high poloidal beta optimized-core scenario with an internal transport barrier that projects nearly to Q = 10 in ITER at ∼8 MA was coupled to a detached divertor, and a near super H-mode optimized-pedestal scenario with co-I p beam injection was coupled to a radiative divertor. The hybrid core scenario was achieved directly, without the need for anomalous current diffusion, using off-axis current drive actuators. Also, a controller to assess proximity to stability limits and regulate β N in the ITER baseline scenario, based on plasma response to probing 3D fields, was demonstrated. Finally, innovative tokamak operation using a negative triangularity shape showed many attractive features for future pilot plant operation.
  •  
2.
  • Al Kharusi, S., et al. (author)
  • SNEWS 2.0 : a next-generation supernova early warning system for multi-messenger astronomy
  • 2021
  • In: New Journal of Physics. - : IOP Publishing. - 1367-2630. ; 23:3
  • Research review (peer-reviewed)abstract
    • The next core-collapse supernova in the Milky Way or its satellites will represent a once-in-a-generation opportunity to obtain detailed information about the explosion of a star and provide significant scientific insight for a variety of fields because of the extreme conditions found within. Supernovae in our galaxy are not only rare on a human timescale but also happen at unscheduled times, so it is crucial to be ready and use all available instruments to capture all possible information from the event. The first indication of a potential stellar explosion will be the arrival of a bright burst of neutrinos. Its observation by multiple detectors worldwide can provide an early warning for the subsequent electromagnetic fireworks, as well as signal to other detectors with significant backgrounds so they can store their recent data. The supernova early warning system (SNEWS) has been operating as a simple coincidence between neutrino experiments in automated mode since 2005. In the current era of multi-messenger astronomy there are new opportunities for SNEWS to optimize sensitivity to science from the next galactic supernova beyond the simple early alert. This document is the product of a workshop in June 2019 towards design of SNEWS 2.0, an upgraded SNEWS with enhanced capabilities exploiting the unique advantages of prompt neutrino detection to maximize the science gained from such a valuable event.
  •  
3.
  • Vanzella, E., et al. (author)
  • An extremely metal-poor star complex in the reionization era : Approaching Population III stars with JWST
  • 2023
  • In: Astronomy and Astrophysics. - 0004-6361 .- 1432-0746. ; 678
  • Journal article (peer-reviewed)abstract
    • We present JWST/Near Infrared Spectrograph (NIRSpec) integral field spectroscopy (IFS) of a lensed Population III candidate stellar complex (dubbed Lensed And Pristine 1, LAP1), with a lensing-corrected stellar mass of ≲104 M⊙ and an absolute luminosity of MUV > −11.2 (mUV > 35.6), confirmed at redshift 6.639 ± 0.004. The system is strongly amplified (μ ≳ 100) by straddling a critical line of the Hubble Frontier Field galaxy cluster MACS J0416. Although the stellar continuum is currently not detected in the Hubble and JWST/Near Infrared Camera (NIRCam) and Near Infrared Imager and Slitless Spectrograph (NIRISS) imaging, arclet-like shapes of Lyman and Balmer lines, Lyα, Hγ, Hβ and Hα are detected with NIRSpec IFS with signal-to-noise ratios (S/N) of approximately 5 − 13 and large equivalent widths (> 300 − 2000 Å), along with a remarkably weak [O III]λλ4959, 5007 at S/N ≃ 4. LAP1 shows a large ionizing photon production efficiency, log(ξion[erg Hz−1]) > 26. From the metallicity indexes R23 = ([O III] + [O II])/Hβ ≲ 0.74 and R3 = ([O III]/Hβ) = 0.55 ± 0.14, we derive an oxygen abundance of 12 + log(O/H)≲6.3. Intriguingly, the Hα emission is also measured in mirrored subcomponents where no [O III] is detected, providing even more stringent upper limits on the metallicity if in situ star formation is ongoing in this region (12 + log(O/H) < 6). The formal stellar mass limit of the subcomponents would correspond to ∼103 M⊙ or MUV fainter than −10. Alternatively, this metal-free, pure line-emitting region could be the first case of a fluorescing H I gas region induced by transverse escaping ionizing radiation from a nearby star complex. The presence of large equivalent-width hydrogen lines and the deficiency of metal lines in such a small region make LAP1 the most metal-poor star-forming region currently known in the reionization era and a promising site that may host isolated, pristine stars.
  •  
4.
  • Heintz, K. E., et al. (author)
  • The Gas and Stellar Content of a Metal-poor Galaxy at z = 8.496 as Revealed by JWST and ALMA
  • 2023
  • In: Astrophysical Journal Letters. - : American Astronomical Society. - 2041-8213 .- 2041-8205. ; 944:2
  • Journal article (peer-reviewed)abstract
    • We present a joint analysis of the galaxy S04590 at z = 8.496 based on NIRSpec, NIRCam, and NIRISS observations obtained as part of the Early Release Observations program of the James Webb Space Telescope (JWST) and the far-infrared [C ii] 158 μm emission line detected by dedicated Atacama Large Millimeter/submillimeter Array (ALMA) observations. We determine the physical properties of S04590 from modeling of the spectral energy distribution (SED) and through the redshifted optical nebular emission lines detected with JWST/NIRSpec. The best-fit SED model reveals a low-mass (M ⋆ = 107.2-108 M ⊙) galaxy with a low oxygen abundance of 12 + log ( O / H ) = 7.16 − 0.12 + 0.10 derived from the strong nebular and auroral emission lines. Assuming that [C ii] effectively traces the interstellar medium, we estimate the total gas mass of the galaxy to be M gas = (8.0 ± 4.0) × 108 M ⊙ based on the luminosity and spatial extent of [C ii]. This yields an exceptionally high gas fraction, f gas = M gas/(M gas + M ⋆) ≳ 90%, though one still consistent with the range expected for low metallicity. We further derive the metal mass of the galaxy based on the gas mass and gas-phase metallicity, which we find to be consistent with the expected metal production from Type II supernovae. Finally, we make the first constraints on the dust-to-gas (DTG) and dust-to-metal (DTM) ratios of galaxies in the epoch of reionization at z ≳ 6, showing overall low mass ratios of logDTG < −3.8 and logDTM < −0.5, though they are consistent with established scaling relations and in particular with those of the local metal-poor galaxy I Zwicky 18. Our analysis highlights the synergy between ALMA and JWST in characterizing the gas, metal, and stellar content of the first generation of galaxies.
  •  
5.
  • Fujimoto, Seiji, et al. (author)
  • JWST and ALMA Multiple-line Study in and around a Galaxy at z =8.496: Optical to Far-Infrared Line Ratios and the Onset of an Outflow Promoting Ionizing Photon Escape
  • 2024
  • In: Astrophysical Journal. - 1538-4357 .- 0004-637X. ; 964:2
  • Journal article (peer-reviewed)abstract
    • We present Atacama Large Millimeter/submillimeter Array (ALMA) deep spectroscopy for a lensed galaxy at z(spec) = 8.496 with log(M-star/M-circle dot) similar to 7.8 whose optical nebular lines and stellar continuum are detected by JWST/NIRSpec and NIRCam Early Release Observations in the field of SMACS J0723.3-7327. Our ALMA spectrum shows [O III] 88 mu m and [C II] 158 mu m line detections at 4.0 sigma and 4.5 sigma, respectively. The redshift and position of the [O III] line coincide with those of the JWST source, while the [C II] line is blueshifted by 90 km s(-1) with a spatial offset of 0.'' 5 (approximate to 0.5 kpc in the source plane) from the centroid of the JWST source. The NIRCam F444W image, including [O III] lambda 5007 and H beta line emission, spatially extends beyond the stellar components by a factor of >8. This indicates that the z = 8.5 galaxy has already experienced strong outflows as traced by extended [O III] lambda 5007 and offset [C II] emission, which would promote ionizing photon escape and facilitate reionization. With careful slit-loss corrections and the removal of emission spatially outside the galaxy, we evaluate the [O III] 88 mu m/lambda 5007 line ratio, and derive the electron density n (e) by photoionization modeling to be 220(-130)(+230) cm(-3), which is comparable with those of z similar to 2-3 galaxies. We estimate an [O III] 88 mu m/[C II] 158 mu m line ratio in the galaxy of >4, as high as those of known z similar to 6-9 galaxies. This high [O III] 88 mu m/[C II] 158 mu m line ratio is generally explained by the high n(e) as well as the low metallicity (Z(gas)/Z(circle dot)=0.04(-0.02)(+0.02)), high ionization parameter (log U > -2.27), and low carbon-to-oxygen abundance ratio (log(C/O) = [-0.52: -0.24]) obtained from the JWST/NIRSpec data; further [C II] follow-up observations will constrain the covering fraction of photodissociation regions.
  •  
6.
  • Fudamoto, Yoshinobu, et al. (author)
  • The Extended [C II] under Construction? : Observation of the Brightest High-z Lensed Star-forming Galaxy at z=6.2
  • 2024
  • In: Astrophysical Journal. - : Institute of Physics Publishing (IOPP). - 0004-637X .- 1538-4357. ; 961:1
  • Journal article (peer-reviewed)abstract
    • We present results of [C ii] 158 μm emission line observations, and report the spectroscopic redshift confirmation of a strongly lensed (μ ∼ 20) star-forming galaxy, MACS0308-zD1 at z = 6.2078 ± 0.0002. The [C ii] emission line is detected with a signal-to-noise ratio >6 within the rest-frame UV-bright clump of the lensed galaxy (zD1.1) and exhibits multiple velocity components; the narrow [C ii] has a velocity full width half maximum (FWHM) of 110 ± 20 km s−1, while broader [C ii] is seen with an FWHM of 230 ± 50 km s−1. The broader [C ii] component is blueshifted (−80 ± 20 km s−1) with respect to the narrow [C ii] component, and has a morphology that extends beyond the UV-bright clump. We find that, while the narrow [C ii] emission is most likely associated with zD1.1, the broader component is possibly associated with a physically distinct gas component from zD1.1 (e.g., outflowing or inflowing gas). Based on the nondetection of λ158μm dust continuum, we find that MACS0308-zD1's star formation activity occurs in a dust-free environment indicated by a strong upper limit of infrared luminosity ≲9 × 108L⊙. Targeting this strongly lensed faint galaxy for follow-up Atacama Large Millimeter/submillimeter Array and JWST observations will be crucial to characterize the details of typical galaxy growth in the early Universe.
  •  
7.
  • Hsiao, Tiger Yu-Yang, et al. (author)
  • JWST Reveals a Possible z similar to 11 Galaxy Merger in Triply Lensed MACS0647-JD
  • 2023
  • In: Astrophysical Journal Letters. - : American Astronomical Society. - 2041-8205 .- 2041-8213. ; 949:2
  • Journal article (peer-reviewed)abstract
    • MACS0647-JD is a triply lensed z similar to 11 galaxy originally discovered with the Hubble Space Telescope. The three lensed images are magnified by factors of similar to 8, 5, and 2 to AB mag 25.1, 25.6, and 26.6 at 3.5 mu m. The brightest is over a magnitude brighter than other galaxies recently discovered at similar redshifts z > 10 with JWST. Here, we report new JWST imaging that clearly resolves MACS0647-JD as having two components that are either merging galaxies or stellar complexes within a single galaxy. The brighter larger component "A" is intrinsically very blue (ss similar to-2.6 +/- 0.1), likely due to very recent star formation and no dust, and is spatially extended with an effective radius similar to 70 +/- 24 pc. The smaller component "B" (r similar to 20-+ 58 pc) appears redder (ss similar to-2 +/- 0.2), likely because it is older (100-200 Myr) with mild dust extinction (AV similar to 0.1 mag). With an estimated stellar mass ratio of roughly 2:1 and physical projected separation similar to 400 pc, we may be witnessing a galaxy merger 430 million years after the Big Bang. We identify galaxies with similar colors in a high-redshift simulation, finding their star formation histories to be dissimilar, which is also suggested by the spectral energy distribution fitting, suggesting they formed further apart. We also identify a candidate companion galaxy "C" similar to 3 kpc away, likely destined to merge with A and B. Upcoming JWST Near Infrared Spectrograph observations planned for 2023 January will deliver spectroscopic redshifts and more physical properties for these tiny magnified distant galaxies observed in the early universe.
  •  
8.
  • Welch, Brian, et al. (author)
  • A highly magnified star at redshift 6.2
  • 2022
  • In: Nature. - : Springer Nature. - 0028-0836 .- 1476-4687. ; 603:7903, s. 815-818
  • Journal article (peer-reviewed)abstract
    • Galaxy clusters magnify background objects through strong gravitational lensing. Typical magnifications for lensed galaxies are factors of a few but can also be as high as tens or hundreds, stretching galaxies into giant arcs(1,2). Individual stars can attain even higher magnifications given fortuitous alignment with the lensing cluster. Recently, several individual stars at redshifts between approximately 1 and 1.5 have been discovered, magnified by factors of thousands, temporarily boosted by microlensing(3-6). Here we report observations of a more distant and persistent magnified star at a redshift of 6.2 +/- 0.1, 900 million years after the Big Bang. This star is magnified by a factor of thousands by the foreground galaxy cluster lens WHL0137-08 (redshift 0.566), as estimated by four independent lens models. Unlike previous lensed stars, the magnification and observed brightness (AB magnitude, 27.2) have remained roughly constant over 3.5 years of imaging and follow-up. The delensed absolute UV magnitude, -10 +/- 2, is consistent with a star of mass greater than 50 times the mass of the Sun. Confirmation and spectral classification are forthcoming from approved observations with the James Webb Space Telescope.
  •  
9.
  • Welch, Brian, et al. (author)
  • JWST Imaging of Earendel, the Extremely Magnified Star at Redshift z=6.2
  • 2022
  • In: Astrophysical Journal Letters. - : Institute of Physics (IOP). - 2041-8205 .- 2041-8213. ; 940
  • Journal article (peer-reviewed)abstract
    • The gravitationally lensed star WHL 0137-LS, nicknamed Earendel, was identified with a photometric redshift z (phot) = 6.2 +/- 0.1 based on images taken with the Hubble Space Telescope. Here we present James Webb Space Telescope (JWST) Near Infrared Camera images of Earendel in eight filters spanning 0.8-5.0 mu m. In these higher-resolution images, Earendel remains a single unresolved point source on the lensing critical curve, increasing the lower limit on the lensing magnification to mu > 4000 and restricting the source plane radius further to r < 0.02 pc, or similar to 4000 au. These new observations strengthen the conclusion that Earendel is best explained by an individual star or multiple star system and support the previous photometric redshift estimate. Fitting grids of stellar spectra to our photometry yields a stellar temperature of T (eff) similar to 13,000-16,000 K, assuming the light is dominated by a single star. The delensed bolometric luminosity in this case ranges from log(L)=5.8 L-theta, which is in the range where one expects luminous blue variable stars. Follow-up observations, including JWST NIRSpec scheduled for late 2022, are needed to further unravel the nature of this object, which presents a unique opportunity to study massive stars in the first billion years of the universe.
  •  
Skapa referenser, mejla, bekava och länka
  • Result 1-9 of 9

Kungliga biblioteket hanterar dina personuppgifter i enlighet med EU:s dataskyddsförordning (2018), GDPR. Läs mer om hur det funkar här.
Så här hanterar KB dina uppgifter vid användning av denna tjänst.

 
pil uppåt Close

Copy and save the link in order to return to this view