SwePub
Sök i SwePub databas

  Utökad sökning

Träfflista för sökning "WFRF:(Stroud M) srt2:(2010-2014)"

Sökning: WFRF:(Stroud M) > (2010-2014)

  • Resultat 1-4 av 4
Sortera/gruppera träfflistan
   
NumreringReferensOmslagsbildHitta
1.
  • Hedin, Jonas, et al. (författare)
  • The MAGIC meteoric smoke particle sampler
  • 2014
  • Ingår i: Journal of Atmospheric and Solar-Terrestrial Physics. - : Elsevier BV. - 1364-6826 .- 1879-1824. ; 118, s. 127-144
  • Tidskriftsartikel (refereegranskat)abstract
    • Between a few tons to several hundred tons of meteoric material enters the Earth's atmosphere each day, and most of this material is ablated and vaporized in the 70-120 km altitude region. The subsequent chemical conversion, re-condensation and coagulation of this evaporated material are thought to form nanometre sized meteoric smoke particles (MSPs). These smoke particles are then subject to further coagulation, sedimentation and global transport by the mesospheric circulation. MSPs have been proposed as a key player in the formation and evolution of ice particle layers around the mesopause region, i.e. noctilucent clouds (NLC) and polar mesosphere summer echoes (PMSE). MSPs have also been implicated in mesospheric heterogeneous chemistry to influence the mesospheric odd oxygen/odd hydrogen (O-x/HOx) chemistry, to play an important role in the mesospheric charge balance, and to be a significant component of stratospheric aerosol and enhance the depletion of O-3. Despite their apparent importance, little is known about the properties of MSPs and none of the hypotheses can be verified without direct evidence of the existence, altitude and size distribution, shape and elemental composition. The aim of the MAGIC project (Mesospheric Aerosol - Genesis, Interaction and Composition) was to develop an instrument and analysis techniques to sample for the first time MSPs in the mesosphere and return them to the ground for detailed analysis in the laboratory. MAGIC meteoric smoke particle samplers have been flown on several sounding rocket payloads between 2005 and 2011. Several of these flights concerned non-summer mesosphere conditions when pure MSP populations can be expected. Other flights concerned high latitude summer conditions when MSPs are expected to be contained in ice particles in the upper mesosphere. In this paper we present the MAGIC project and describe the MAGIC MSP sampler, the measurement procedure and laboratory analysis. We also present the attempts to retrieve MSPs from these flights, the challenges inherent to the sampling of nanometre sized particles and the subsequent analysis of the sampled material, and thoughts for the future. Despite substantial experimental efforts, the MAGIC project has so far failed to provide conclusive results. While particles with elemental composition similar to what is to be expected from MSPs have been found, the analysis has been compromised by challenges with different types of contamination and uncertainties in the sticking efficiency of the particles on the sampling surfaces.
  •  
2.
  • Kaminski, T., et al. (författare)
  • The BETHY/JSBACH Carbon Cycle Data Assimilation System: experiences and challenges
  • 2013
  • Ingår i: Journal of Geophysical Research - Biogeosciences. - : American Geophysical Union (AGU). - 2169-8953. ; 118:4, s. 1414-1426
  • Forskningsöversikt (refereegranskat)abstract
    • We present the concept of the Carbon Cycle Data Assimilation System and describe its evolution over the last two decades from an assimilation system around a simple diagnostic model of the terrestrial biosphere to a system for the calibration and initialization of the land component of a comprehensive Earth system model. We critically review the capability of this modeling framework to integrate multiple data streams, to assess their mutual consistency and with the model, to reduce uncertainties in the simulation of the terrestrial carbon cycle, to provide, in a traceable manner, reanalysis products with documented uncertainty, and to assist the design of the observational network. We highlight some of the challenges we met and experience we gained, give recommendations for operating the system, and suggest directions for future development.
  •  
3.
  • Schlessinger, Avner, et al. (författare)
  • Comparison of human solute carriers
  • 2010
  • Ingår i: Protein Science. - : Wiley. - 0961-8368 .- 1469-896X. ; 19:3, s. 412-428
  • Tidskriftsartikel (refereegranskat)abstract
    • Solute carriers are eukaryotic membrane proteins that control the uptake and efflux of solutes, including essential cellular compounds, environmental toxins, and therapeutic drugs. Solute carriers can share similar structural features despite weak sequence similarities. Identification of sequence relationships among solute carriers is needed to enhance our ability to model individual carriers and to elucidate the molecular mechanisms of their substrate specificity and transport. Here, we describe a comprehensive comparison of solute carriers. We link the proteins using sensitive profile-profile alignments and two classification approaches, including similarity networks. The clusters are analyzed in view of substrate type, transport mode, organism conservation, and tissue specificity. Solute carrier families with similar substrates generally cluster together, despite exhibiting relatively weak sequence similarities. In contrast, some families cluster together with no apparent reason, revealing unexplored relationships. We demonstrate computationally and experimentally the functional overlap between representative members of these families. Finally, we identify four putative solute carriers in the human genome. The solute carriers include a biomedically important group of membrane proteins that is diverse in sequence and structure. The proposed classification of solute carriers, combined with experiment, reveals new relationships among the individual families and identifies new solute carriers. The classification scheme will inform future attempts directed at modeling the structures of the solute carriers, a prerequisite for describing the substrate specificities of the individual families.
  •  
4.
  •  
Skapa referenser, mejla, bekava och länka
  • Resultat 1-4 av 4

Kungliga biblioteket hanterar dina personuppgifter i enlighet med EU:s dataskyddsförordning (2018), GDPR. Läs mer om hur det funkar här.
Så här hanterar KB dina uppgifter vid användning av denna tjänst.

 
pil uppåt Stäng

Kopiera och spara länken för att återkomma till aktuell vy