SwePub
Sök i SwePub databas

  Utökad sökning

Träfflista för sökning "WFRF:(Sundin Johanna) srt2:(1999)"

Sökning: WFRF:(Sundin Johanna) > (1999)

  • Resultat 1-4 av 4
Sortera/gruppera träfflistan
   
NumreringReferensOmslagsbildHitta
1.
  • Sundin, Johanna, et al. (författare)
  • High yield direct 76Br-bromination of monoclonal antibodies using Cloramine-T
  • 1999
  • Ingår i: Nuclear Medicine and Biology. - 0969-8051 .- 1872-9614. ; 26:8, s. 923-929
  • Tidskriftsartikel (refereegranskat)abstract
    • Monoclonal antibody (MAb) A33 was labeled with the positron emitter 76Br (T(1/2) = 16.2 h). Direct labeling was done using the conventional chloramine-T method. After optimization of the labeling conditions, a maximum yield (mean +/- max error) of 77 +/- 2% was obtained at pH 6.8. In vitro binding of 76Br-A33 to SW1222 colonic cancer cells showed that the immunoreactivity was retained. Also, the MAbs 38S1 and 3S193 and the peptide hEGF were 76Br-labeled, resulting in labeling yields (mean +/- max error) of 75 +/- 3%, 63 +/- 4%, and 73 +/- 0.1%, respectively. We conclude that antibodies and peptides can be labeled conveniently with 76Br for the purpose of whole-body tumour imaging by positron emission tomography.
  •  
2.
  • Zhao, Qinghai, et al. (författare)
  • Effects of dextranation on the pharmacokinetics of short peptides : A PETstudy on mEGF
  • 1999
  • Ingår i: Bioconjugate chemistry. - : American Chemical Society (ACS). - 1043-1802 .- 1520-4812. ; 10:6, s. 938-946
  • Tidskriftsartikel (refereegranskat)abstract
    • The effects of dextranation on the biodistribution of mouse epidermal growth factor (mEGF, 6 kDa) were assessed. By reductive amination, mEGF was coupled to 13 and 46 kDa dextran. The two dextranated conjugates and free mEGF were labeled with the positron-emitting nuclide (76)Br (T(1/2) = 16 h). After intravenous administration to Sprague Dawley rats, the radioactivity biodistribution was evaluated by positron emission tomography (PET) and by measurements of dissected tissues. The dextranation prolonged the retention time in blood, especially when the dextran chain was long. [(76)Br]mEGF-dextran conjugates were shown to have significantly, more than 5 times, lower kidney accumulation than the nonconjugated [(76)Br]mEGF. In conclusion, dextranation affects the biodistribution of mEGF in vivo giving a prolonged circulation time, a decreased uptake in kidney, and an increased spleen accumulation.
  •  
3.
  • Beshara, Soheir, et al. (författare)
  • Kinetic analysis of 52Fe-labelled iron(III) hydroxide-sucrose complex following bolus administration using positron emission tomography
  • 1999
  • Ingår i: British Journal of Haematology. - : Wiley. - 0007-1048 .- 1365-2141. ; 104:2, s. 288-295
  • Tidskriftsartikel (refereegranskat)abstract
    • Kinetic analysis of a single intravenous injection of 100 mg iron(III) hydroxide-sucrose complex (Venofer) mixed with 52Fe(III) hydroxide-sucrose as a tracer was followed for 3-6 h in four generally anaesthetized, artificially ventilated minipigs using positron emission tomography (PET). The amount of injected radioactivity ranged from 30 to 200 MBq. Blood radioactivity, measured by PET in the left ventricle of the heart, displayed a fast clearance phase followed by a slow one. In the liver and bone marrow a fast radioactivity uptake occurred during the first 30 min, followed by a slower steady increase. In the liver a slight decrease in radioactivity uptake was noted by the end of the study. A kinetic analysis using a three-compartment (namely blood pool, reversible and irreversible tissue pools) model showed a fairly high distribution volume in the liver as compared with the bone marrow. In conclusion, the pharmacokinetics of the injected complex was clearly visualized with the PET technique. The organs of particular interest, namely the heart (for blood kinetics), liver and bone marrow could all be viewed by a single setting of a PET tomograph with an axial field of view of 10 cm. The half-life (T1/2) of 52Fe (8.3 h) enables a detailed kinetic study up to 24 h. A novel method was introduced to verify the actual 52Fe contribution to the PET images by removing the interfering radioactive daughter 52mMn positron emissions. The kinetic data fitted the three-compartment model, from which rate constants could be obtained for iron transfer from the blood to a pool of iron in bone marrow or liver to which it was bound during the study period. In addition, there was a reversible tissue pool of iron, which in the liver slowly equilibrated with the blood, to give a net efflux from the liver some hours after i.v. administration. The liver uptake showed a relatively long distribution phase, whereas the injected iron was immediately incorporated into the bone marrow. Various transport mechanisms seem to be involved in the handling of the injected iron complex.
  •  
4.
  • Beshara, Soheir, et al. (författare)
  • Pharmacokinetics and red cell utilization of iron(III) hydroxide- sucrose complex in anaemic patients: a study using positron emission tomography
  • 1999
  • Ingår i: British Journal of Haematology. - : Wiley. - 0007-1048 .- 1365-2141. ; 104:2, s. 296-302
  • Tidskriftsartikel (refereegranskat)abstract
    • The pharmacokinetics of a single intravenous injection of 100 mg iron hydroxide-sucrose complex labelled with a tracer in the form of 52Fe/59Fe was followed in six anaemic patients for a period ranging from 6 to 8 3 h using positron emission tomography (PET). Red cell utilization of the labelled iron was followed for 4 weeks. PET data showed radioactive uptake by the liver, spleen and bone marrow. The uptake by the macrophage-rich spleen demonstrated the reticuloendothelial uptake of this iron preparation, with subsequent effective release of that iron for marrow utilization. Red cell utilization, followed for 4 weeks, ranged from 59% to 97%. The bone marrow influx rate constant was independent of blood iron concentration, indicating non-saturation of the transport system in bone marrow. This implied that higher doses of the iron complex can probably be used in the same setting. A higher influx rate into the marrow compared with the liver seemed to be consistent with higher red cell utilization. This would indicate that early distribution of the injected iron complex may predict the long-term utilization.
  •  
Skapa referenser, mejla, bekava och länka
  • Resultat 1-4 av 4

Kungliga biblioteket hanterar dina personuppgifter i enlighet med EU:s dataskyddsförordning (2018), GDPR. Läs mer om hur det funkar här.
Så här hanterar KB dina uppgifter vid användning av denna tjänst.

 
pil uppåt Stäng

Kopiera och spara länken för att återkomma till aktuell vy