SwePub
Sök i SwePub databas

  Utökad sökning

Träfflista för sökning "WFRF:(Törngren Marie) srt2:(2015-2019)"

Sökning: WFRF:(Törngren Marie) > (2015-2019)

  • Resultat 1-4 av 4
Sortera/gruppera träfflistan
   
NumreringReferensOmslagsbildHitta
1.
  • Lauss, Martin, et al. (författare)
  • Mutational and putative neoantigen load predict clinical benefit of adoptive T cell therapy in melanoma
  • 2017
  • Ingår i: Nature Communications. - : Springer Science and Business Media LLC. - 2041-1723. ; 8:1
  • Tidskriftsartikel (refereegranskat)abstract
    • Adoptive T-cell therapy (ACT) is a highly intensive immunotherapy regime that has yielded remarkable response rates and many durable responses in clinical trials in melanoma; however, 50-60% of the patients have no clinical benefit. Here, we searched for predictive biomarkers to ACT in melanoma. Whole exome-and transcriptome sequencing and neoantigen prediction were applied to pre-treatment samples from 27 patients recruited to a clinical phase I/II trial of ACT in stage IV melanoma. All patients had previously progressed on other immunotherapies. We report that clinical benefit is associated with significantly higher predicted neoantigen load. High mutation and predicted neoantigen load are significantly associated with improved progression-free and overall survival. Further, clinical benefit is associated with the expression of immune activation signatures including a high MHC-I antigen processing and presentation score. These results improve our understanding of mechanisms behind clinical benefit of ACT in melanoma.
  •  
2.
  • Olsson, Anders, et al. (författare)
  • Tasquinimod triggers an early change in the polarization of tumor associated macrophages in the tumor microenvironment.
  • 2015
  • Ingår i: Journal for ImmunoTherapy of Cancer. - : BMJ. - 2051-1426. ; 3
  • Tidskriftsartikel (refereegranskat)abstract
    • Tasquinimod (a quinoline-3-carboxyamide) is a small molecule immunotherapy with demonstrated effects on the tumor microenvironment (TME) involving immunomodulation, anti-angiogenesis and inhibition of metastasis. A target molecule of tasquinimod is the inflammatory protein S100A9 which has been shown to affect the accumulation and function of suppressive myeloid cell subsets in tumors. Given the major impact of myeloid cells to the tumor microenvironment, manipulation of this cell compartment is a desirable goal in cancer therapeutics.
  •  
3.
  • Stenström, Martin, et al. (författare)
  • Paquinimod reduces skin fibrosis in tight skin 1 mice, an experimental model of systemic sclerosis
  • 2016
  • Ingår i: Journal of Dermatological Science. - : Elsevier BV. - 0923-1811. ; 83:1, s. 52-59
  • Tidskriftsartikel (refereegranskat)abstract
    • Background: Systemic Sclerosis (SSc) is an autoimmune disease characterized by vascular and immune dysfunction. A hallmark of SSc is the excessive accumulation of extracellular matrix in the skin and in internal organs. There is a high and unmet medical need for novel therapies in this disease. The pathogenesis of SSc is complex and still poorly understood, but the innate immune system has emerged as an important factor in the disease. SSc patients show increased numbers of macrophages/monocytes in the blood and in the skin compared to healthy individuals and these cells are important sources of profibrotic cytokines and chemokines. Paquinimod belongs to a class of orally active quinoline-3-carboxamide (quinoline) derivatives with immunomodulatory properties and has shown effects in several models of autoimmune/inflammatory disorders. Paquinimod is currently in clinical development for treatment of SSc. The immunomodulatory effects of paquinimod is by targeting the myeloid cell compartment via the S100A9 protein. Objective: In this study we investigate whether targeting of myeloid cells by paquinimod can effect disease development in an experimental model of SSc, the tight skin 1 (Tsk-1) mouse model. Methods: Seven weeks old female B6.Cg-Fbn1Tsk/J (Tsk-1) mice were treated with vehicle or paquinimod at the dose of 5 or 25 mg/kg/day in the drinking water for 8 weeks. The effect of paquinimod on the level of skin fibrosis and on different subpopulations within the myeloid cell compartment in skin biopsies were evaluated by using histology, immunohistochemisty, a hydroxyproline assay and real-time PCR. Furthermore, the level of IgG in serum from treated animals was also analysed. The statistical analyses were performed using Mann-Whitney nonparametric two tailed rank test. Results: The results show that treatment with paquinimod reduces skin fibrosis measured as reduction of skin thickness and decreased number of myofibroblasts and total hydroxyproline content. The effect on fibrosis was associated with a polarization of macrophages in the skin from a pro-fibrotic M2 to a M1 phenotype. Paquinimod treatment also resulted in a reduced TGFβ-response in the skin and an abrogation of the increased auto-antibody production in this SSc model. Conclusions: Paquinimod reduces skin fibrosis in an experimental model of SSc, and this effect correlates with local and systemic effects on the immune system.
  •  
4.
  • Tahvili, Sahar, et al. (författare)
  • Paquinimod prevents development of diabetes in the non-obese diabetic (NOD) mouse
  • 2018
  • Ingår i: PLoS ONE. - : Public Library of Science (PLoS). - 1932-6203. ; 13:5
  • Tidskriftsartikel (refereegranskat)abstract
    • Quinoline-3-carboxamides (Q compounds) are immunomodulatory compounds that have shown efficacy both in autoimmune disease and cancer. We have in here investigated the impact of one such compound, paquinimod, on the development of diabetes in the NOD mouse model for type I diabetes (T1D). In cohorts of NOD mice treated with paquinimod between weeks 10 to 20 of age and followed up until 40 weeks of age, we observed dose-dependent reduction in incidence of disease as well as delayed onset of disease. Further, in contrast to untreated controls, the majority of NOD mice treated from 15 weeks of age did not develop diabetes at 30 weeks of age. Importantly, these mice displayed significantly less insulitis, which correlated with selectively reduced number of splenic macrophages and splenic Ly6Chi inflammatory monocytes at end point as compared to untreated controls. Collectively, these results demonstrate that paquinimod treatment can significantly inhibit progression of insulitis to T1D in the NOD mouse. We propose that the effect of paquinimod on disease progression may be related to the reduced number of these myeloid cell populations. Our finding also indicates that this compound could be a candidate for clinical development towards diabetes therapy in humans.
  •  
Skapa referenser, mejla, bekava och länka
  • Resultat 1-4 av 4

Kungliga biblioteket hanterar dina personuppgifter i enlighet med EU:s dataskyddsförordning (2018), GDPR. Läs mer om hur det funkar här.
Så här hanterar KB dina uppgifter vid användning av denna tjänst.

 
pil uppåt Stäng

Kopiera och spara länken för att återkomma till aktuell vy