SwePub
Sök i SwePub databas

  Utökad sökning

Träfflista för sökning "WFRF:(Taher A) srt2:(2015-2019)"

Sökning: WFRF:(Taher A) > (2015-2019)

  • Resultat 1-16 av 16
Sortera/gruppera träfflistan
   
NumreringReferensOmslagsbildHitta
1.
  • Thomas, HS, et al. (författare)
  • 2019
  • swepub:Mat__t
  •  
2.
  •  
3.
  •  
4.
  • El-Seedi, Hesham R., et al. (författare)
  • Cardenolides : Insights from chemical structure and pharmacological utility
  • 2019
  • Ingår i: Pharmacological Research. - : Academic Press. - 1043-6618 .- 1096-1186. ; 141, s. 123-175
  • Tidskriftsartikel (refereegranskat)abstract
    • Cardiac glycosides (CGs) are a class of naturally occurring steroid-like compounds, and members of this class have been in clinical use for more than 1500 years. They have been used in folk medicine as arrow poisons, abortifacients, heart tonics, emetics, and diuretics as well as in other applications. The major use of CGs today is based on their ability to inhibit the membrane-bound Na + /K + -ATPase enzyme, and they are regarded as an effective treatment for congestive heart failure (CHF), cardiac arrhythmia and atrial fibrillation. Furthermore, increasing evidence has indicated the potential cytotoxic effects of CGs against various types of cancer. In this review, we highlight some of the structural features of this class of natural products that are crucial for their efficacy, some methods of isolating these compounds from natural resources, and the structural elucidation tools that have been used. We also describe their physicochemical properties and several modern biotechnological approaches for preparing CGs that do not require plant sources.
  •  
5.
  • El-Seedi, H. R., et al. (författare)
  • Hydroxycinnamic Acids : Natural Sources, Biosynthesis, Possible Biological Activities, and Roles in Islamic Medicine
  • 2017
  • Ingår i: Studies in Natural Products Chemistry. - : Elsevier B.V.. ; , s. 1-29
  • Bokkapitel (refereegranskat)abstract
    • Hydroxycinnamic acids are the most widely distributed phenolic acids in plants. Broadly speaking, they can be defined as compounds derived from cinnamic acid. They are present at high concentrations in many food products, including fruits, vegetables, tea, cocoa, and wine. Cinnamic acid has received great attention in oriental research where it has been used as an antioxidant in food additives in Asia and especially in medical studies in China after being proven to be an effective component of medicinal herbs used by traditional medicine. Cinnamic acid is a phenolic acid widely distributed in the plant kingdom. It presents a wide range of potential therapeutic effects useful in the treatments of cancer, diabetes, lung, and cardiovascular diseases, as well as hepatic, neuro-, and photoprotective effects and antimicrobial and antiinflammatory activities. Overall, the pharmaceutical potential of cinnamic acid can be attributed to its ability to scavenge free radicals. However, recent studies have revealed that cinnamic acid presents pharmacological properties beyond those related to its antioxidant activity, such as the ability to competitively inhibit HMG-CoA reductase and activate glucokinase, contributing to reduce hypercholesterolemia and hyperglycemia, respectively. A diet rich in hydroxycinnamic acids is thought to be associated with beneficial health effects such as a reduced risk of cardiovascular disease. The impact of hydroxycinnamic acids on health depends on their intake and pharmacokinetic properties. It can be found free, dimerized or esterified with proteins and polysaccharides in the cell wall, such as arabinoxylans in grasses and xyloglucans in bamboo. Cinnamic acid is an important biological and structural component of the plant cell wall. Due to its ability to stop radical chain reactions by resonance followed by polymerization, cinnamic acid offers protection against UV radiation and is responsible for cross-linking polysaccharides and other cell wall polymers. Cinnamic acid can be absorbed by the small intestine and excreted in the urine, where therapeutic efficacy is dependent on its physiological concentrations and pharmacokinetic properties, which include absorption, distribution, metabolism, and excretion of metabolites. Mass spectrometry (MS) and nuclear magnetic resonance (NMR) spectroscopy, especially 2D NMR (COSY, NOESY, HMQC, and HMBC), are the most useful analytical techniques for the structural elucidation of hydroxycinnamic acids besides UV, IR, CD, X-ray analysis, and chemical degradation. In this chapter, we update the reader about the therapeutic properties of cinnamic acid, reviewing its dietary sources, the pharmacokinetic profile, antioxidant action mechanisms, and therapeutic effects in the treatment and prevention of various diseases, in order to provide a basis for understanding its pharmaceutical potential.
  •  
6.
  • El-Awady, Raafat A, et al. (författare)
  • Epigenetics and miRNA as predictive markers and targets for lung cancer chemotherapy
  • 2015
  • Ingår i: Cancer Biology & Therapy. - Philadelphia, PA, United States : Taylor & Francis. - 1538-4047 .- 1555-8576. ; 16:7, s. 1056-1070
  • Tidskriftsartikel (refereegranskat)abstract
    • Lung cancer cells show inherent and acquired resistance to chemotherapy. The lack of good predictive markers/novel targets and the incomplete understanding of the mechanisms of resistance limit the success of lung cancer response to chemotherapy. In the present study, we used an isogenic pair of lung adenocarcinoma cell lines; A549 (wild-type) and A549DOX11 (doxorubicin resistant) to study the role of epigenetics and miRNA in resistance/response of non-small cell lung cancer (NSCLC) cells to doxorubicin. Our results demonstrate differential expression of epigenetic markers whereby the level of HDACs 1, 2, 3 and4, DNA methyltransferase, acetylated H2B and acetylated H3 were lower in A549DOX11 compared to A549 cells. Fourteen miRNAs were dys-regulated in A549DOX11 cells compared to A549 cells, of these 14 miRNAs, 4 (has-mir-1973, 494, 4286 and 29b-3p) have shown 2.99 – 4.44 fold increase in their expression. This was associated with reduced apoptosis and higher resistance of A549DOX11cells to doxorubicin and etoposide. Sequential treatment with the epigenetic modifiers trichostatin A or 5-aza-2'-deoxycytidine followed by doxorubicin resulted in: (i) enhanced sensitivity of both cell lines to doxorubicin especially at low concentrations, (ii) enhanced doxorubicin-induced DNA damage in both cell lines, (iii) dysregulation of some miRNAs in A549 cells. In conclusion, A549DOX11 cells resistant to DNA damaging drugs have epigenetic profile and miRNA expression different from the sensitive cells. Moreover, epigenetic modifiers may reverse the resistance of certain NSCLC cells to DNA damaging agents by enhancing induction of DNA damage. This may open the door for using epigenetic profile/miRNA expression of some cancer cells as resistance markers/targets to improve response of resistant cells to doxorubicin and for the use of combination doxorubicin/epigenetic modifiers to reduce doxorubicin toxicity.
  •  
7.
  • Kryshtal, O., et al. (författare)
  • Microstructure and phase composition of the Ag-Al film wear track : Through-thickness characterization by advanced electron microscopy
  • 2019
  • Ingår i: Archives of Metallurgy and Materials. - : POLSKA AKAD NAUK, POLISH ACAD SCIENCES, INST METALL & MATER SCI PAS. - 1733-3490 .- 2300-1909. ; 64:1, s. 251-256
  • Tidskriftsartikel (refereegranskat)abstract
    • Analytical transmission electron microscopy has been applied to characterize the microstructure, phase and chemical composition of the Ag-Al wear track throughout its thickness down to the atomic level. Microscopy findings have been correlated with Ag-Al film tribological properties to understand the effect of the hexagonal solid solution phase on the tribological properties of this film. Ag-25Al (at.%) films have been produced by simultaneous magnetron sputtering of components in Ar atmosphere under 1 mTorr pressure and subjected to pin-on-disc tribological tests. It has been shown that hcp phase with (001) planes aligned parallel to the film surface dominates both in as-deposited and in tribofilm areas of the Ag-Al alloy film. Possible mechanisms of reduced friction in easily oxidized Ag-Al system are discussed and the mechanism based on readily shearing basal planes of the hcp phase is considered as the most probable one.
  •  
8.
  •  
9.
  • El-Taher, A., et al. (författare)
  • Noise characterization and transmission evaluation of unrepeated Raman amplified DP-16QAM link
  • 2015
  • Ingår i: Optical Fiber Communication Conference, OFC 2015. - Washington, D.C. : The Optical Society. - 9781557529374
  • Konferensbidrag (refereegranskat)abstract
    • Impairments characterization and performance evaluation of Raman amplified unrepeated DP-16QAM transmissions are conducted. Experimental results indicate that small gain in forward direction enhance the system signal-to-noise ratio for longer reach without introducing noticeable penalty.
  •  
10.
  • Engert, Andreas, et al. (författare)
  • The European Hematology Association Roadmap for European Hematology Research : a consensus document
  • 2016
  • Ingår i: Haematologica. - Pavia, Italy : Ferrata Storti Foundation (Haematologica). - 0390-6078 .- 1592-8721. ; 101:2, s. 115-208
  • Tidskriftsartikel (refereegranskat)abstract
    • The European Hematology Association (EHA) Roadmap for European Hematology Research highlights major achievements in diagnosis and treatment of blood disorders and identifies the greatest unmet clinical and scientific needs in those areas to enable better funded, more focused European hematology research. Initiated by the EHA, around 300 experts contributed to the consensus document, which will help European policy makers, research funders, research organizations, researchers, and patient groups make better informed decisions on hematology research. It also aims to raise public awareness of the burden of blood disorders on European society, which purely in economic terms is estimated at (sic)23 billion per year, a level of cost that is not matched in current European hematology research funding. In recent decades, hematology research has improved our fundamental understanding of the biology of blood disorders, and has improved diagnostics and treatments, sometimes in revolutionary ways. This progress highlights the potential of focused basic research programs such as this EHA Roadmap. The EHA Roadmap identifies nine 'sections' in hematology: normal hematopoiesis, malignant lymphoid and myeloid diseases, anemias and related diseases, platelet disorders, blood coagulation and hemostatic disorders, transfusion medicine, infections in hematology, and hematopoietic stem cell transplantation. These sections span 60 smaller groups of diseases or disorders. The EHA Roadmap identifies priorities and needs across the field of hematology, including those to develop targeted therapies based on genomic profiling and chemical biology, to eradicate minimal residual malignant disease, and to develop cellular immunotherapies, combination treatments, gene therapies, hematopoietic stem cell treatments, and treatments that are better tolerated by elderly patients.
  •  
11.
  • Hussein, Mohammad H., et al. (författare)
  • Beta 2 -adrenergic receptor gene haplotypes and bronchodilator response in Egyptian patients with chronic obstructive pulmonary disease
  • 2017
  • Ingår i: Advances in Medical Sciences. - Warsaw, Poland : Elsevier. - 1896-1126 .- 1898-4002. ; 62:1, s. 193-201
  • Tidskriftsartikel (refereegranskat)abstract
    • Purpose: Chronic obstructive pulmonary disease (COPD) is a multi-factorial disorder caused by environmental determinants and genetic risk factors. Understanding the genetic predisposition of COPD is essential to develop personalized treatment regimens. Beta2-adrenergic receptor (ADRB2) gene polymorphisms have been implicated in the pathogenesis of obstructive pulmonary diseases. This study was conducted to assess the genetic association between Arg16Gly and Gln27Glu polymorphisms and COPD in the Egyptian patients, and to analyze their impact on the clinical outcome and therapeutic response.Patients/methods: The study population included 115 participants (61 COPD patients and 54 healthy controls) were genotyped for the Arg16Gly (rs1042713) and Gln27Glu (rs1042714) polymorphisms. Pulmonary function test was done and repeated in patients after salbutamol inhalation.Results: The Gly16 and Gln27 alleles represented 57% and 70% of the whole study population, and only 3 haplotypes were detected; Arg16/Gln27, Gly16/Gln27, and Gly16/Glu27. Genotypes and haplotypes homozygous for Arg16 and Gln27 were more likely to develop COPD (p<0.05). However, individuals carrying Glu27 allele conferred protection against COPD development (p=0.002). Furthermore, Arg16 genotypes and haplotypes were significantly associated with higher grades of dyspnea, more COPD symptoms and frequent exacerbations. In contrast, patients carrying Glu27 allele had better bronchial airway responsiveness to β2-agonists.Conclusions: Our findings suggested that the ADRB2 gene polymorphisms may have vital role in COPD risk, severity, and bronchodilator response among Egyptian population. Larger epidemiological studies are needed for results validation.
  •  
12.
  •  
13.
  • Madkour, Mohamed I., et al. (författare)
  • Ramadan diurnal intermittent fasting modulates SOD2, TFAM, Nrf2, and sirtuins (SIRT1, SIRT3) gene expressions in subjects with overweight and obesity
  • 2019
  • Ingår i: Diabetes Research and Clinical Practice. - Shannon, Ireland : Elsevier Ireland Ltd.. - 0168-8227 .- 1872-8227. ; 155
  • Tidskriftsartikel (refereegranskat)abstract
    • Aim: A growing body of evidence supports the impact of intermittent fasting on normalizing body metabolism and lowering oxidative stress and inflammation. Mounting evidence confirms that oxidative stress and chronic inflammation trigger the way for the development of metabolic diseases, such as diabetes. This research was conducted to evaluate the impact of Ramadan intermittent fasting (RIF) on the expression of cellular metabolism (SIRT1 and SIRT3) and antioxidant genes (TFAM, SOD2, and Nrf2).Methods: Fifty-six (34 males and 22 females) overweight and obese subjects and six healthy body weight controls were recruited and monitored before and after Ramadan.Results: Results showed that the relative gene expressions in obese subjects in comparison to counterpart expressions of controls for the antioxidant genes (TFAM, SOD2, and Nrf2) were significantly increased at the end of Ramadan, with percent increments of 90.5%, 54.1% and 411.5% for the three genes, respectively. However, the metabolism-controlling gene (SIRT3) showed a highly significant (P < 0.001) downregulation accompanied with a trend for reduction in SIRT1 gene at the end of Ramadan month, with percent decrements of 61.8% and 10.4%, respectively. Binary regression analysis revealed significant positive correlation (P < 0.05) between high energy intake (>2000 Kcal/day vs. <2000 Kcal/day) and expressions of SOD2 and TFAM (r = 0.84 and r = 0.9, respectively).Conclusion: Results suggest that RIF ameliorates the genetic expression of antioxidant and anti-inflammatory, and metabolic regulatory genes. Thus, RIF presumably may entail a protective impact against oxidative stress and its adverse metabolic-related derangements in non-diabetic obese patients.
  •  
14.
  • Maher, Shymaa, et al. (författare)
  • Comparison of the osteogenic differentiation potential of mesenchymal cells isolated from human bone marrow, umbilical cord blood and placenta derived stem cells
  • 2015
  • Ingår i: Beni-Suef University Journal of Basic and Applied Sciences. - Heidelberg, Germany : Springer. - 2314-8535. ; 4:1, s. 80-85
  • Tidskriftsartikel (refereegranskat)abstract
    • Bone marrow has been considered for long time as the main source for mesenchymal stem cells. However, bone marrow aspiration is an invasive process that can be associated with morbidity as well as few numbers of obtained cells. Umbilical cord blood and placental tissues are other potential sources for the same type of cells. These sources are abundant, accessible and associated with no harm to the donor. This study aimed at determining the differentiation of the three cell types towards the osteogenic lineage in short term culture and in classical osteogenic conditions. The gene expression profile showed that bone marrow derived cells were the most responsive to the culture conditions while umbilical cord blood derived cells were next, as shown by the expression by the osteogenic key transcription factors ‘Runx-2’ and osterix. At the meantime, umbilical cord blood and placenta derived cells showed significant enhancement of the gene expression over the study course, which denoted potential response of the cells. Based on these results and the availability of these two sources, umbilical cord blood and placenta should still be considered as potential sources for mesenchymal stem cells in osteogenic research program. However their differentiation potential will need further enhancement.
  •  
15.
  •  
16.
  • Tolba, Mai F., et al. (författare)
  • Caffeic acid phenethyl ester protects against glucocorticoid-induced osteoporosis in vivo : Impact on oxidative stress and RANKL/OPG signals
  • 2017
  • Ingår i: Toxicology and Applied Pharmacology. - Maryland Heights, MO, United States : Elsevier. - 0041-008X .- 1096-0333. ; 324, s. 26-35
  • Tidskriftsartikel (refereegranskat)abstract
    • Glucocorticoid-induced osteoporosis (GIO) is one of the most common causes of secondary osteoporosis. Given that glucocorticoids are considered as a main component of the treatment protocols for a variety of inflammation and immune-mediated diseases besides its use as adjuvant to several chemotherapeutic agents, it is crucial to find ways to overcome this critical adverse effect. Caffeic acid phenethyl ester (CAPE), which is a natural compound derived from honeybee propolis displayed promising antiosteoporotic effects against mechanical bone injury in various studies. The current work aimed at investigating the potential protective effect of CAPE against GIO in vivo with emphasis on the modulation of oxidative status and receptor activator of NF-kB ligand (RANKL)/osteoprotegrin (OPG) signaling. The results showed that CAPE opposed dexamethasone (DEX)-mediated alterations in bone histology and tartarate-resistant acid phosphatase (TRAP) activity. In addition, CAPE restored oxidative balance, Runt-related transcription factor 2 (RunX2) expression and reduced caspase-3 activity in femur tissues. Co-administration of CAPE with DEX normalized RANKL/OPG ratio and Akt activation indicating a reduction in DEX-osteoclastogenesis. In conclusion, concurrent treatment of CAPE with DEX exhibited promising effects in the protection against DEX-induced osteoporosis through opposing osteoclastogenesis and protecting osteoblasts. The potent antioxidant activity of CAPE is, at least in part, involved in its anti-apoptotic effects and modulation of RunX2 and RANKL/OPG signals. The use of CAPE-enriched propolis formulas is strongly recommended for patients on chronic glucocorticoid therapy to help in the attenuation of GIO.
  •  
Skapa referenser, mejla, bekava och länka
  • Resultat 1-16 av 16

Kungliga biblioteket hanterar dina personuppgifter i enlighet med EU:s dataskyddsförordning (2018), GDPR. Läs mer om hur det funkar här.
Så här hanterar KB dina uppgifter vid användning av denna tjänst.

 
pil uppåt Stäng

Kopiera och spara länken för att återkomma till aktuell vy