SwePub
Sök i SwePub databas

  Utökad sökning

Träfflista för sökning "WFRF:(Takao Masato) srt2:(2020-2023)"

Sökning: WFRF:(Takao Masato) > (2020-2023)

  • Resultat 1-3 av 3
Sortera/gruppera träfflistan
   
NumreringReferensOmslagsbildHitta
1.
  • Harakawa, Hiroki, et al. (författare)
  • A super-Earth orbiting near the inner edge of the habitable zone around the M4.5 dwarf Ross 508
  • 2022
  • Ingår i: Publications of the Astronomical Society of Japan. - : Oxford University Press (OUP). - 0004-6264 .- 2053-051X. ; 74:4, s. 904-922
  • Tidskriftsartikel (refereegranskat)abstract
    • We report the near-infrared radial velocity (RV) discovery of a super-Earth planet on a 10.77 d orbit around the M4.5 dwarf Ross 508 (Jmag = 9.1). Using precision RVs from the Subaru Telescope IRD (InfraRed Doppler) instrument, we derive a semi-amplitude of 3.92ms−1⁠, corresponding to a planet with a minimum mass msini=4.00M⊕⁠. We find no evidence of significant signals at the detected period in spectroscopic stellar activity indicators or MEarth photometry. The planet, Ross 508 b, has a semi-major axis of 0.05366au. This gives an orbit-averaged insolation of ≈1.4 times the Earth’s value, placing Ross 508 b near the inner edge of its star’s habitable zone. We have explored the possibility that the planet has a high eccentricity and its host is accompanied by an additional unconfirmed companion on a wide orbit. Our discovery demonstrates that the near-infrared RV search can play a crucial role in finding a low-mass planet around cool M dwarfs like Ross 508.
  •  
2.
  • Murawski, Christopher D., et al. (författare)
  • Terminology for osteochondral lesions of the ankle: proceedings of the International Consensus Meeting on Cartilage Repair of the Ankle
  • 2022
  • Ingår i: JOURNAL OF ISAKOS JOINT DISORDERS & ORTHOPAEDIC SPORTS MEDICINE. - : Elsevier BV. - 2059-7754 .- 2059-7762. ; 7:2, s. 62-66
  • Tidskriftsartikel (refereegranskat)abstract
    • Background: The evidence supporting best practice guidelines in the field of cartilage repair of the ankle is based on both low quality and low levels of evidence. Therefore, an international consensus group of experts was convened to collaboratively advance toward consensus opinions based on the best available evidence on key topics within cartilage repair of the ankle. The purpose of this article is to report the consensus statements on "terminology for osteochondral lesions of the ankle" developed at the 2019 International Consensus Meeting on Cartilage Repair of the Ankle. Methods: Forty-three international experts in cartilage repair of the ankle representing 20 countries were convened and participated in a process based on the Delphi method of achieving consensus. Questions and statements were drafted within four working groups focusing on specific topics within cartilage repair of the ankle, after which a comprehensive literature review was performed, and the available evidence for each state-ment was graded. Discussion and debate occurred in cases where statements were not agreed on in unanimous fashion within the working groups. A final vote was then held, and the strength of consensus was characterised as follows: consensus, 51%-74%; strong consensus, 75%-99%; unanimous, 100%. Results: A total of 11 statements on terminology and classification reached consensus during the 2019 Interna-tional Consensus Meeting on Cartilage Repair of the Ankle. Definitions are provided for osseous, chondral and osteochondral lesions, as well as bone marrow stimulation and injury chronicity, among others. An osteochondral lesion of the talus can be abbreviated as OLT. Conclusions: This international consensus derived from leaders in the field will assist clinicians with the appro-priate terminology for osteochondral lesions of the ankle.
  •  
3.
  • Uyama, Taichi, et al. (författare)
  • Direct Imaging Explorations for Companions around Mid-Late M Stars from the Subaru/IRD Strategic Program
  • 2023
  • Ingår i: Astronomical Journal. - : American Astronomical Society. - 0004-6256 .- 1538-3881. ; 165:4
  • Tidskriftsartikel (refereegranskat)abstract
    • The Subaru telescope is currently performing a strategic program (SSP) using the high-precision near-infrared (NIR) spectrometer IRD to search for exoplanets around nearby mid/late M dwarfs via radial velocity (RV) monitoring. As part of the observing strategy for the exoplanet survey, signatures of massive companions such as RV trends are used to reduce the priority of those stars. However, this RV information remains useful for studying the stellar multiplicity of nearby M dwarfs. To search for companions around such "deprioritized" M dwarfs, we observed 14 IRD-SSP targets using Keck/NIRC2 with pyramid wave-front sensing at NIR wavelengths, leading to high sensitivity to substellar-mass companions within a few arcseconds. We detected two new companions (LSPM J1002+1459 B and LSPM J2204+1505 B) and two new candidates that are likely companions (LSPM J0825+6902 B and LSPM J1645+0444 B), as well as one known companion. Including two known companions resolved by the IRD fiber injection module camera, we detected seven (four new) companions at projected separations between ∼2 and 20 au in total. A comparison of the colors with the spectral library suggests that LSPM J2204+1505 B and LSPM J0825+6902 B are located at the boundary between late M and early L spectral types. Our deep high-contrast imaging for targets where no bright companions were resolved did not reveal any additional companion candidates. The NIRC2 detection limits could constrain potential substellar-mass companions (∼10–75 MJup) at 10 au or further. The failure with Keck/NIRC2 around the IRD-SSP stars having significant RV trends makes these objects promising targets for further RV monitoring or deeper imaging with the James Webb Space Telescope to search for smaller-mass companions below the NIRC2 detection limits.
  •  
Skapa referenser, mejla, bekava och länka
  • Resultat 1-3 av 3

Kungliga biblioteket hanterar dina personuppgifter i enlighet med EU:s dataskyddsförordning (2018), GDPR. Läs mer om hur det funkar här.
Så här hanterar KB dina uppgifter vid användning av denna tjänst.

 
pil uppåt Stäng

Kopiera och spara länken för att återkomma till aktuell vy