SwePub
Sök i SwePub databas

  Utökad sökning

Träfflista för sökning "WFRF:(Tanveer M.) srt2:(2015-2019)"

Sökning: WFRF:(Tanveer M.) > (2015-2019)

  • Resultat 1-4 av 4
Sortera/gruppera träfflistan
   
NumreringReferensOmslagsbildHitta
1.
  • Flores-Morales, Amilcar, et al. (författare)
  • Proteogenomic characterization of patient-derived xenografts highlights the role of REST in neuroendocrine differentiation of castration-resistant prostate cancer
  • 2019
  • Ingår i: Clinical Cancer Research. - 1078-0432. ; 25:2, s. 595-608
  • Tidskriftsartikel (refereegranskat)abstract
    • Purpose: An increasing number of castration-resistant prostate cancer (CRPC) tumors exhibit neuroendocrine (NE) features. NE prostate cancer (NEPC) has poor prognosis, and its development is poorly understood. Experimental Design: We applied mass spectrometry–based proteomics to a unique set of 17 prostate cancer patient–derived xenografts (PDX) to characterize the effects of castration in vivo, and the proteome differences between NEPC and prostate adenocarcinomas. Genome-wide profiling of REST-occupied regions in prostate cancer cells was correlated to the expression changes in vivo to investigate the role of the transcriptional repressor REST in castration-induced NEPC differentiation. Results: An average of 4,881 proteins were identified and quantified from each PDX. Proteins related to neurogenesis, cell-cycle regulation, and DNA repair were found upregulated and elevated in NEPC, while the reduced levels of proteins involved in mitochondrial functions suggested a prevalent glycolytic metabolism of NEPC tumors. Integration of the REST chromatin bound regions with expression changes indicated a direct role of REST in regulating neuronal gene expression in prostate cancer cells. Mechanistically, depletion of REST led to cell-cycle arrest in G1, which could be rescued by p53 knockdown. Finally, the expression of the REST-regulated gene secretagogin (SCGN) correlated with an increased risk of suffering disease relapse after radical prostatectomy. Conclusions: This study presents the first deep characterization of the proteome of NEPC and suggests that concomitant inhibition of REST and the p53 pathway would promote NEPC. We also identify SCGN as a novel prognostic marker in prostate cancer.
  •  
2.
  • Islam, M. S., et al. (författare)
  • Augmenting the sensing aptitude of hydrogenated graphene by crafting with defects and dopants
  • 2016
  • Ingår i: Sensors and actuators. B, Chemical. - : Elsevier. - 0925-4005 .- 1873-3077. ; 228, s. 317-321
  • Tidskriftsartikel (refereegranskat)abstract
    • Density functional theory (DFT) level calculations were performed to study the interaction of hydrogenated graphene (CH) monolayer towards methane (CH4) gas molecules. The structural, electronic and gas sensing properties of pure, defected and light metal-doped CH monolayer were investigated. For the pristine CH, the estimated binding energy of CH4 fell short of the desired physisorption range and limit its gas sensing application at ambient conditions. However, upon crafting defects on pure CH layer by introducing hydrogen vacancies, a sharp increase in adsorption energies were observed when the CH4 molecules approached the defected sites of CH. Further, the effect of metal doping was studied by uniformly distributing light metal adatoms on CH monolayer which significantly enhanced the CH4 adsorption. To have better accuracy in calculating adsorption energies, we have incorporated van der Waals type corrections to our calculations for these weakly interacting systems.
  •  
3.
  • Ragupathi, V., et al. (författare)
  • Enhanced electrochemical performance of LiMnBO3 with conductive glassy phase : a prospective cathode material for lithium-ion battery
  • 2017
  • Ingår i: Ionics (Kiel). - : Springer. - 0947-7047 .- 1862-0760. ; 23:7, s. 1645-1653
  • Tidskriftsartikel (refereegranskat)abstract
    • LiMnBO3 has been identified as a promising cathode material for next-generation lithium-ion batteries. In this study, LiMnBO3 along with glassy lithium borate material (LiMnBO3 (II)) is synthesized by sol-gel method. X-ray diffraction (XRD) analysis depicts the existence of LiBO2 glassy phase along with m-LiMnBO3 phase. Transmission electron microscopy (TEM) analysis confirms the presence of LiBO2 glassy phase. An enhanced electrical conductivity of 3.64 x 10(-7) S/cm is observed for LiMnBO3 (II). The LiBO2 glassy phase is found to promote the Li reaction kinetics in LiMnBO3 (II). The synthesized LiMnBO3 (II) delivers a first discharge capacity of 310 mAh g(-1) within a potential window of 1.5-4.5 V at C/10 rate. Further, a discharge capacity of 186 mAh g(-1) at the 27th cycle shows a better cycle performance. The enhanced capacity is due to the presence of LiBO2 glassy phase and more than one Li-ion transfer in the lithium-rich stoichiometry of LiMnBO3 (II). Density functional theory calculation reveals the exact electronic structure of m-LiMnBO3 with a band gap of 3.05 eV. A charge transfer mechanism is predicted for delithiation process of m-LiMnBO3.
  •  
4.
  • Rao, G. S., et al. (författare)
  • Adsorption mechanism of graphene-like ZnO monolayer towards CO2 molecules : enhanced CO2 capture
  • 2016
  • Ingår i: Nanotechnology. - : Institute of Physics Publishing (IOPP). - 0957-4484 .- 1361-6528. ; 27:1
  • Tidskriftsartikel (refereegranskat)abstract
    • This work aims to efficiently capture CO2 on two-dimensional (2D) nanostructures for effective cleaning of our atmosphere and purification of exhausts coming from fuel engines. Here, we have performed extensive first principles calculations based on density functional theory (DFT) to investigate the interaction of CO2 on a recently synthesized ZnO monolayer (ZnO-ML) in its pure, defected and functionalized form. A series of rigorous calculations yielded the most preferential binding configurations of the CO2 gas molecule on a ZnO-ML. It is observed that the substitution of one oxygen atom with boron, carbon and nitrogen on the ZnO monolayer resulted into enhanced CO2 adsorption. Our calculations show an enriched adsorption of CO2 on the ZnO-ML when substituting with foreign atoms like B, C and N. The improved adsorption energy of CO2 on ZnO suggests the ZnO-ML could be a promising candidate for future CO2 capture.
  •  
Skapa referenser, mejla, bekava och länka
  • Resultat 1-4 av 4

Kungliga biblioteket hanterar dina personuppgifter i enlighet med EU:s dataskyddsförordning (2018), GDPR. Läs mer om hur det funkar här.
Så här hanterar KB dina uppgifter vid användning av denna tjänst.

 
pil uppåt Stäng

Kopiera och spara länken för att återkomma till aktuell vy