SwePub
Sök i SwePub databas

  Utökad sökning

Träfflista för sökning "WFRF:(Teixeira Ana P.M.) "

Sökning: WFRF:(Teixeira Ana P.M.)

  • Resultat 1-2 av 2
Sortera/gruppera träfflistan
   
NumreringReferensOmslagsbildHitta
1.
  • van Leeuwen, F., et al. (författare)
  • Gaia Data Release 1 : Open cluster astrometry: Performance, limitations, and future prospects
  • 2017
  • Ingår i: Astronomy and Astrophysics. - : EDP Sciences. - 0004-6361 .- 1432-0746. ; 601
  • Tidskriftsartikel (refereegranskat)abstract
    • Context. The first Gaia Data Release contains the Tycho-Gaia Astrometric Solution (TGAS). This is a subset of about 2 million stars for which, besides the position and photometry, the proper motion and parallax are calculated using Hipparcos and Tycho-2 positions in 1991.25 as prior information. Aims. We investigate the scientific potential and limitations of the TGAS component by means of the astrometric data for open clusters. Methods. Mean cluster parallax and proper motion values are derived taking into account the error correlations within the astrometric solutions for individual stars, an estimate of the internal velocity dispersion in the cluster, and, where relevant, the effects of the depth of the cluster along the line of sight. Internal consistency of the TGAS data is assessed. Results. Values given for standard uncertainties are still inaccurate and may lead to unrealistic unit-weight standard deviations of least squares solutions for cluster parameters. Reconstructed mean cluster parallax and proper motion values are generally in very good agreement with earlier Hipparcos-based determination, although the Gaia mean parallax for the Pleiades is a significant exception. We have no current explanation for that discrepancy. Most clusters are observed to extend to nearly 15 pc from the cluster centre, and it will be up to future Gaia releases to establish whether those potential cluster-member stars are still dynamically bound to the clusters. Conclusions. The Gaia DR1 provides the means to examine open clusters far beyond their more easily visible cores, and can provide membership assessments based on proper motions and parallaxes. A combined HR diagram shows the same features as observed before using the Hipparcos data, with clearly increased luminosities for older A and F dwarfs.
  •  
2.
  • Teixeira, Pedro P.C., et al. (författare)
  • Decoding the rhizodeposit-derived carbon's journey into soil organic matter
  • 2024
  • Ingår i: Geoderma. - 0016-7061. ; 443
  • Tidskriftsartikel (refereegranskat)abstract
    • Net rhizodeposition corresponds to the portion of living root carbon (C) that remains in the soil after microbial processing and partial decomposition. Although it is assumed that this C input exerts an important role in the formation of soil organic matter (SOM), its contribution to distinct SOM pools is still not fully understood. In this study, we aimed to (i) quantify the retention of net rhizodeposition C in the different SOM fractions and in reactive Al and Fe mineral phases and (ii) investigate how rhizodeposition drives the spatial distribution of microbial communities in the rhizosphere. To track the transfer of net rhizodeposition into the soil, we used artificially labeled eucalypt (Eucalyptus spp.) seedlings under a 13C-CO2 atmosphere (multiple-pulse labeling). Combining physical SOM fractionation and the chemical extraction of aluminum (Al) and iron (Fe) reactive phases, we studied the distribution of net rhizodeposition into different soil fractions. We also assessed the 13C incorporation into microbial phospholipid fatty acids (PLFAs) at different distances from the roots. Our results show that 76 % of the net rhizodeposition 13C was retained within the mineral-associated organic matter (MAOM) fraction. About 28 % of net rhizodeposition 13C within the MAOM fraction was retained within the Al and Fe reactive phases, indicating that this is a sizeable mechanism for the retention of net rhizodeposition in soil. Rhizodeposition increased the abundance of microbial PLFAs exclusively in the soil close to the roots (0–4 mm), with prominent incorporation of net rhizodeposition 13C into fungal biomarkers. Overall, our findings underscore the importance of mineral associations for the retention of net rhizodeposition in the soil. We also highlight the role of fungi in transferring the root-derived C beyond the root vicinity and promoting the formation of occluded SOM.
  •  
Skapa referenser, mejla, bekava och länka
  • Resultat 1-2 av 2

Kungliga biblioteket hanterar dina personuppgifter i enlighet med EU:s dataskyddsförordning (2018), GDPR. Läs mer om hur det funkar här.
Så här hanterar KB dina uppgifter vid användning av denna tjänst.

 
pil uppåt Stäng

Kopiera och spara länken för att återkomma till aktuell vy