SwePub
Sök i SwePub databas

  Utökad sökning

Träfflista för sökning "WFRF:(The Matthew) srt2:(2020-2024)"

Sökning: WFRF:(The Matthew) > (2020-2024)

  • Resultat 1-5 av 5
Sortera/gruppera träfflistan
   
NumreringReferensOmslagsbildHitta
1.
  • Chang, Yun Chien, et al. (författare)
  • Decrypting lysine deacetylase inhibitor action and protein modifications by dose-resolved proteomics
  • 2024
  • Ingår i: Cell Reports. - : Elsevier BV. - 2211-1247. ; 43:6
  • Tidskriftsartikel (refereegranskat)abstract
    • Lysine deacetylase inhibitors (KDACis) are approved drugs for cutaneous T cell lymphoma (CTCL), peripheral T cell lymphoma (PTCL), and multiple myeloma, but many aspects of their cellular mechanism of action (MoA) and substantial toxicity are not well understood. To shed more light on how KDACis elicit cellular responses, we systematically measured dose-dependent changes in acetylation, phosphorylation, and protein expression in response to 21 clinical and pre-clinical KDACis. The resulting 862,000 dose-response curves revealed, for instance, limited cellular specificity of histone deacetylase (HDAC) 1, 2, 3, and 6 inhibitors; strong cross-talk between acetylation and phosphorylation pathways; localization of most drug-responsive acetylation sites to intrinsically disordered regions (IDRs); an underappreciated role of acetylation in protein structure; and a shift in EP300 protein abundance between the cytoplasm and the nucleus. This comprehensive dataset serves as a resource for the investigation of the molecular mechanisms underlying KDACi action in cells and can be interactively explored online in ProteomicsDB.
  •  
2.
  • Schober, Florian A., et al. (författare)
  • The one-carbon pool controls mitochondrial energy metabolism via complex I and iron-sulfur clusters
  • 2021
  • Ingår i: Science Advances. - : American Association for the Advancement of Science (AAAS). - 2375-2548. ; 7:8
  • Tidskriftsartikel (refereegranskat)abstract
    • Induction of the one-carbon cycle is an early hallmark of mitochondrial dysfunction and cancer metabolism. Vital intermediary steps are localized to mitochondria, but it remains unclear how one-carbon availability connects to mitochondrial function. Here, we show that the one-carbon metabolite and methyl group donor S-adenosylmethionine (SAM) is pivotal for energy metabolism. A gradual decline in mitochondrial SAM (mitoSAM) causes hierarchical defects in fly and mouse, comprising loss of mitoSAM-dependent metabolites and impaired assembly of the oxidative phosphorylation system. Complex I stability and iron-sulfur cluster biosynthesis are directly controlled by mitoSAM levels, while other protein targets are predominantly methylated outside of the organelle before import. The mitoSAM pool follows its cytosolic production, establishing mitochondria as responsive receivers of one-carbon units. Thus, we demonstrate that cellular methylation potential is required for energy metabolism, with direct relevance for pathophysiology, aging, and cancer.
  •  
3.
  • The, Matthew, et al. (författare)
  • Focus on the spectra that matter by clustering of quantification data in shotgun proteomics
  • 2020
  • Ingår i: Nature Communications. - : Springer Nature. - 2041-1723. ; 11:1
  • Tidskriftsartikel (refereegranskat)abstract
    • In shotgun proteomics, the analysis of label-free quantification experiments is typically limited by the identification rate and the noise level in the quantitative data. This generally causes a low sensitivity in differential expression analysis. Here, we propose a quantification-first approach for peptides that reverses the classical identification-first workflow, thereby preventing valuable information from being discarded in the identification stage. Specifically, we introduce a method, Quandenser, that applies unsupervised clustering on both MS1 and MS2 level to summarize all analytes of interest without assigning identities. This reduces search time due to the data reduction. We can now employ open modification and de novo searches to identify analytes of interest that would have gone unnoticed in traditional pipelines. Quandenser+Triqler outperforms the state-of-the-art method MaxQuant+Perseus, consistently reporting more differentially abundant proteins for all tested datasets. Software is available for all major operating systems at https://github.com/statisticalbiotechnology/quandenser, under Apache 2.0 license. Matching mass spectra to peptide sequences is the usual first step in proteomics data analysis, often followed by peptide quantification. Here, the authors show that clustering and quantifying mass spectral features prior to peptide identification can increase the sensitivity of label-free quantitative proteomics.
  •  
4.
  • The, Matthew, et al. (författare)
  • Triqler for MaxQuant : Enhancing Results from MaxQuant by Bayesian Error Propagation and Integration
  • 2021
  • Ingår i: Journal of Proteome Research. - : American Chemical Society (ACS). - 1535-3893 .- 1535-3907. ; 20:4, s. 2062-2068
  • Tidskriftsartikel (refereegranskat)abstract
    • Error estimation for differential protein quantification by label-free shotgun proteomics is challenging due to the multitude of error sources, each contributing uncertainty to the final results. We have previously designed a Bayesian model, Triqler, to combine such error terms into one combined quantification error. Here we present an interface for Triqler that takes MaxQuant results as input, allowing quick reanalysis of already processed data. We demonstrate that Triqler outperforms the original processing for a large set of both engineered and clinical/biological relevant data sets. Triqler and its interface to MaxQuant are available as a Python module under an Apache 2.0 license from https://pypi.org/project/triqler/.
  •  
5.
  • Truong, Patrick, et al. (författare)
  • Triqler for Protein Summarization of Data from Data-Independent Acquisition Mass Spectrometry
  • 2023
  • Ingår i: Journal of Proteome Research. - : American Chemical Society (ACS). - 1535-3893 .- 1535-3907. ; 22:4, s. 1359-1366
  • Tidskriftsartikel (refereegranskat)abstract
    • A frequent goal, or subgoal, when processing data from a quantitative shotgun proteomics experiment is a list of proteins that are differentially abundant under the examined experimental conditions. Unfortunately, obtaining such a list is a challenging process, as the mass spectrometer analyzes the proteolytic peptides of a protein rather than the proteins themselves. We have previously designed a Bayesian hierarchical probabilistic model, Triqler, for combining peptide identification and quantification errors into probabilities of proteins being differentially abundant. However, the model was developed for data from data-dependent acquisition. Here, we show that Triqler is also compatible with data-independent acquisition data after applying minor alterations for the missing value distribution. Furthermore, we find that it has better performance than a set of compared state-of-the-art protein summarization tools when evaluated on data-independent acquisition data.
  •  
Skapa referenser, mejla, bekava och länka
  • Resultat 1-5 av 5

Kungliga biblioteket hanterar dina personuppgifter i enlighet med EU:s dataskyddsförordning (2018), GDPR. Läs mer om hur det funkar här.
Så här hanterar KB dina uppgifter vid användning av denna tjänst.

 
pil uppåt Stäng

Kopiera och spara länken för att återkomma till aktuell vy