SwePub
Sök i SwePub databas

  Utökad sökning

Träfflista för sökning "WFRF:(Tired Tobias) srt2:(2016)"

Sökning: WFRF:(Tired Tobias) > (2016)

  • Resultat 1-3 av 3
Sortera/gruppera träfflistan
   
NumreringReferensOmslagsbildHitta
1.
  • Bejarano Carmona, Manuel, et al. (författare)
  • A broadband SiGe Power Amplifier for E-band communication applications
  • 2016
  • Ingår i: 2015 Asia-Pacific Microwave Conference, APMC 2015 - Proceedings. - 9781479987658 ; 3
  • Konferensbidrag (refereegranskat)abstract
    • This work presents a broadband SiGe Power Amplifier (PA) for operation between 60-90 GHz covering both 71-76 GHz and 81-86 GHz E-Band sub-bands. It consists of a two-stage differential cascode amplifier using an LC-interstage matching network in the interface between the stages. Single-ended to differential conversion is accomplished by the use of two stacked 1-To-1 transformers, achieving a simulated insertion loss of 0.63 dB and 0.45 dB at input and output, respectively. The design has been implemented using Infineon B7HF200 0.18 pm SiGe HBT process with fp/fmax 200/250 GHz. Measured performance indicates that the PA delivers 12.6 dBm saturated output power (Psat) with 4.6% peak Power Added Efficiency (PAE) at 84 GHz while providing at least 6 dB of gain covering a frequency range from 62 to 90 GHz. The circuit consumes 102 mA from a 2.8 V power supply and occupies an area of 0.105 mm2.
  •  
2.
  • TIRED, TOBIAS, et al. (författare)
  • A 1.5 V 28 GHz beam steering SiGe PLL for an 81-86 GHz E-band transmitter
  • 2016
  • Ingår i: IEEE Microwave and Wireless Components Letters. - 1531-1309. ; 26:10, s. 843-845
  • Tidskriftsartikel (refereegranskat)abstract
    • This letter presents measurement results for a low supply voltage 28 GHz beam steering PLL, designed in a SiGe bipolar process with fT=200 GHz. The PLL, designed around a QVCO, is intended for a beam steering 81-86 GHz E-band transmitter. Linear phase control is implemented by variable current injection into a Gilbert type phase detector, with a measured nominal phase control sensitivity of 2.5 °/ μA . The demonstrated LO generation method offers great advantages in the implementation of beam steering mm-wave transmitters, since only the low frequency PLL reference signal of 1.75 GHz needs to be routed across the chip to the different transmitters. Except for an active loop filter, used to extend the locking range of the PLL, the design uses a low supply voltage of 1.5 V. The PLL obtains a measured in band phase noise of −107 dBc/Hz at 1 MHz offset. The power consumption equals 54 mW from the 1.5 V supply plus 1.8 mW for the variable supply of the active low pass filter.
  •  
3.
  • TIRED, TOBIAS (författare)
  • Integrated Transceivers for Millimeter Wave and Cellular Communication
  • 2016. - First
  • Doktorsavhandling (övrigt vetenskapligt/konstnärligt)abstract
    • Abstract:This doctoral thesis is addresses two topics in integrated circuit design: multiband direct conversion cellular receivers for cellular frequencies and beam steering transmitters for millimeter wave communication for the cellular backhaul. The trend towards cellular terminals supporting ever more different frequency bands has resulted in complex radio frontends with a large number of RF inputs. Common receivers have, for performance reasons, in the past used differential RF inputs. However, as shown in the thesis, with novel design techniques it is possible to achieve adequate performance with a single ended frontend architecture, thereby reducing the complexity and pin-count. Millimeter wave integrated circuits development has previously not been subject to the mass production requirements that have been put on chip sets for cellular terminals, i.e. a minimum number of circuits, low supply voltage and power consumption, together with programmability to handle process spread and performance fine tuning. However, in the near future, when 5G networks will be deployed and the number of small pico- and femtocell base stations will explode, there will be a strong demand for low cost and high performance single-chip millimeter wave beam steering transceivers. The millimeter wave circuits presented in this work have been designed in a SiGe bipolar technology. Traditionally, SiGe designs use a higher supply voltage compared to CMOS. In this work, however, it has been shown that millimeter wave transceivers can be designed using a low supply voltage, thereby reducing the power consumption and eliminating the need for dedicated voltage regulators.Paper I presents a 28 GHz QVCO with an I/Q phase error tuning and detection. In paper II a 28 GHz beam steering PLL is presented together with measurement results for the design in paper I. Measurement results for the beam steering PLL are shown in paper III. Simulation results for a two-stage 81-86 GHz power amplifier are provided in paper IV. Paper V shows measurement results for two E-band power amplifiers. In paper VI, simulation results are presented for a complete E-band transmitter including a three-stage power amplifier. A reconfigurable single-ended CMOS LNA for different cellular frequency bands is presented in paper VII. A single-ended multiband RF-amplifier and mixer with DC-offset and second order distortion suppression in BiCMOS technology is presented in paper VIII.
  •  
Skapa referenser, mejla, bekava och länka
  • Resultat 1-3 av 3

Kungliga biblioteket hanterar dina personuppgifter i enlighet med EU:s dataskyddsförordning (2018), GDPR. Läs mer om hur det funkar här.
Så här hanterar KB dina uppgifter vid användning av denna tjänst.

 
pil uppåt Stäng

Kopiera och spara länken för att återkomma till aktuell vy