SwePub
Sök i SwePub databas

  Utökad sökning

Träfflista för sökning "WFRF:(Tkachenko A.) srt2:(2010-2014)"

Sökning: WFRF:(Tkachenko A.) > (2010-2014)

  • Resultat 1-7 av 7
Sortera/gruppera träfflistan
   
NumreringReferensOmslagsbildHitta
1.
  • Olive, K. A., et al. (författare)
  • REVIEW OF PARTICLE PHYSICS Particle Data Group
  • 2014
  • Ingår i: Chinese Physics C. - : IOP Publishing. - 1674-1137 .- 2058-6132. ; 38:9
  • Forskningsöversikt (refereegranskat)abstract
    • The Review summarizes much of particle physics and cosmology. Using data from previous editions, plus 3,283 new measurements from 899 Japers, we list, evaluate, and average measured properties of gauge bosons and the recently discovered Higgs boson, leptons, quarks, mesons, and baryons. We summarize searches for hypothetical particles such as heavy neutrinos, supersymmetric and technicolor particles, axions, dark photons, etc. All the particle properties and search limits are listed in Summary Tables. We also give numerous tables, figures, formulae, and reviews of topics such as Supersymmetry, Extra Dimensions, Particle Detectors, Probability, and Statistics. Among the 112 reviews are many that are new or heavily revised including those on: Dark Energy, Higgs Boson Physics, Electroweak Model, Neutrino Cross Section Measurements, Monte Carlo Neutrino Generators, Top Quark, Dark Matter, Dynamical Electroweak Symmetry Breaking, Accelerator Physics of Colliders, High-Energy Collider Parameters, Big Bang Nucleosynthesis, Astrophysical Constants and Cosmological Parameters.
  •  
2.
  • Beringer, J., et al. (författare)
  • REVIEW OF PARTICLE PHYSICS Particle Data Group
  • 2012
  • Ingår i: Physical Review D. - 1550-7998 .- 1550-2368. ; 86:1, s. 010001-
  • Forskningsöversikt (refereegranskat)abstract
    • This biennial Review summarizes much of particle physics. Using data from previous editions, plus 2658 new measurements from 644 papers, we list, evaluate, and average measured properties of gauge bosons, leptons, quarks, mesons, and baryons. We summarize searches for hypothetical particles such as Higgs bosons, heavy neutrinos, and supersymmetric particles. All the particle properties and search limits are listed in Summary Tables. We also give numerous tables, figures, formulae, and reviews of topics such as the Standard Model, particle detectors, probability, and statistics. Among the 112 reviews are many that are new or heavily revised including those on Heavy-Quark and Soft-Collinear Effective Theory, Neutrino Cross Section Measurements, Monte Carlo Event Generators, Lattice QCD, Heavy Quarkonium Spectroscopy, Top Quark, Dark Matter, V-cb & V-ub, Quantum Chromodynamics, High-Energy Collider Parameters, Astrophysical Constants, Cosmological Parameters, and Dark Matter. A booklet is available containing the Summary Tables and abbreviated versions of some of the other sections of this full Review. All tables, listings, and reviews (and errata) are also available on the Particle Data Group website: http://pdg.lbl.gov.
  •  
3.
  • Nakamura, K., et al. (författare)
  • Review Of Particle Physics
  • 2010
  • Ingår i: Journal of Physics G: Nuclear and Particle Physics. - 0954-3899 .- 1361-6471. ; 37:7A, s. 1-1422
  • Forskningsöversikt (refereegranskat)abstract
    • This biennial Review summarizes much of particle physics. Using data from previous editions, plus 2158 new measurements from 551 papers, we list, evaluate, and average measured properties of gauge bosons, leptons, quarks, mesons, and baryons. We also summarize searches for hypothetical particles such as Higgs bosons, heavy neutrinos, and supersymmetric particles. All the particle properties and search limits are listed in Summary Tables. We also give numerous tables, figures, formulae, and reviews of topics such as the Standard Model, particle detectors, probability, and statistics. Among the 108 reviews are many that are new or heavily revised including those on neutrino mass, mixing, and oscillations, QCD, top quark, CKM quark-mixing matrix, V-ud & V-us, V-cb & V-ub, fragmentation functions, particle detectors for accelerator and non-accelerator physics, magnetic monopoles, cosmological parameters, and big bang cosmology. A booklet is available containing the Summary Tables and abbreviated versions of some of the other sections of this full Review. All tables, listings, and reviews (and errata) are also available on the Particle Data Group website: http://pdg.1b1.gov.
  •  
4.
  • Rauer, H., et al. (författare)
  • The PLATO 2.0 mission
  • 2014
  • Ingår i: Experimental astronomy. - : Springer Science and Business Media LLC. - 0922-6435 .- 1572-9508. ; 38:1-2, s. 249-330
  • Tidskriftsartikel (refereegranskat)abstract
    • PLATO 2.0 has recently been selected for ESA's M3 launch opportunity (2022/24). Providing accurate key planet parameters (radius, mass, density and age) in statistical numbers, it addresses fundamental questions such as: How do planetary systems form and evolve? Are there other systems with planets like ours, including potentially habitable planets? The PLATO 2.0 instrument consists of 34 small aperture telescopes (32 with 25 s readout cadence and 2 with 2.5 s cadence) providing a wide field-of-view (2232 deg(2)) and a large photometric magnitude range (4-16 mag). It focuses on bright (4-11 mag) stars in wide fields to detect and characterize planets down to Earth-size by photometric transits, whose masses can then be determined by ground-based radial-velocity follow-up measurements. Asteroseismology will be performed for these bright stars to obtain highly accurate stellar parameters, including masses and ages. The combination of bright targets and asteroseismology results in high accuracy for the bulk planet parameters: 2 %, 4-10 % and 10 % for planet radii, masses and ages, respectively. The planned baseline observing strategy includes two long pointings (2-3 years) to detect and bulk characterize planets reaching into the habitable zone (HZ) of solar-like stars and an additional step-and-stare phase to cover in total about 50 % of the sky. PLATO 2.0 will observe up to 1,000,000 stars and detect and characterize hundreds of small planets, and thousands of planets in the Neptune to gas giant regime out to the HZ. It will therefore provide the first large-scale catalogue of bulk characterized planets with accurate radii, masses, mean densities and ages. This catalogue will include terrestrial planets at intermediate orbital distances, where surface temperatures are moderate. Coverage of this parameter range with statistical numbers of bulk characterized planets is unique to PLATO 2.0. The PLATO 2.0 catalogue allows us to e. g.: - complete our knowledge of planet diversity for low-mass objects, - correlate the planet mean density-orbital distance distribution with predictions from planet formation theories,- constrain the influence of planet migration and scattering on the architecture of multiple systems, and - specify how planet and system parameters change with host star characteristics, such as type, metallicity and age. The catalogue will allow us to study planets and planetary systems at different evolutionary phases. It will further provide a census for small, low-mass planets. This will serve to identify objects which retained their primordial hydrogen atmosphere and in general the typical characteristics of planets in such a low-mass, low-density range. Planets detected by PLATO 2.0 will orbit bright stars and many of them will be targets for future atmosphere spectroscopy exploring their atmospheres. Furthermore, the mission has the potential to detect exomoons, planetary rings, binary and Trojan planets. The planetary science possible with PLATO 2.0 is complemented by its impact on stellar and galactic science via asteroseismology as well as light curves of all kinds of variable stars, together with observations of stellar clusters of different ages. This will allow us to improve stellar models and study stellar activity. A large number of well-known ages from red giant stars will probe the structure and evolution of our Galaxy. Asteroseismic ages of bright stars for different phases of stellar evolution allow calibrating stellar age-rotation relationships. Together with the results of ESA's Gaia mission, the results of PLATO 2.0 will provide a huge legacy to planetary, stellar and galactic science.
  •  
5.
  • Mullen, Craig A, et al. (författare)
  • Evidence of B Cell Immune Responses to Acute Lymphoblastic Leukemia in Murine Allogeneic Hematopoietic Stem Cell Transplantation Recipients Treated with Donor Lymphocyte Infusion and/or Vaccination
  • 2010
  • Ingår i: Biology of blood and marrow transplantation. - : Elsevier BV. - 1083-8791 .- 1523-6536. ; 17:2, s. 226-238
  • Tidskriftsartikel (refereegranskat)abstract
    • These experiments explored mechanisms of control of acute lymphoblastic leukemia following allogeneic hematopoietic stem cell transplantation using a murine model of MHC-matched, minor histocompatibility antigen mismatched transplantation. The central hypothesis examined was that addition of active vaccination against leukemia cells would substantially increase the effectiveness of allogeneic donor lymphocyte infusion against ALL present in the host after transplant. While vaccination did increase the magnitude of type I T cell responses against leukemia cells associated with donor lymphocyte infusion, it did not lead to substantial improvement in long term survival. Analysis of immunological mechanisms of leukemia progression demonstrated that the failure of vaccination was not due to antigen loss in leukemia cells. However, analysis of survival provided surprising findings that, in addition to very modest type I T cell responses, a B cell response that produced antibodies that bind leukemia cells was found in long term survivors. The risk of death from leukemia was significantly lower in recipients that had higher levels of such antibodies. These studies raise the hypothesis that stimulation of B cell responses after transplant may provide a novel way to enhance allogeneic graft versus leukemia effects associated with transplantation.
  •  
6.
  • Sokolov, Boris, et al. (författare)
  • ICUMT 2009 Conference in St. Petersburg, Russia
  • 2010
  • Ingår i: IEEE Global Communications Newsletter. - New York, NY : IEEE Communications Society. - 0163-6804. ; :May, s. 3-3
  • Tidskriftsartikel (populärvet., debatt m.m.)
  •  
7.
  • Tkachenko, A., et al. (författare)
  • Denoising spectroscopic data by means of the improved least-squares deconvolution method
  • 2013
  • Ingår i: Astronomy and Astrophysics. - : EDP Sciences. - 0004-6361 .- 1432-0746. ; 560, s. A37-
  • Tidskriftsartikel (refereegranskat)abstract
    • Context. The MOST, CoRoT, and Kepler space missions have led to the discovery of a large number of intriguing, and in some cases unique, objects among which are pulsating stars, stars hosting exoplanets, binaries, etc. Although the space missions have delivered photometric data of unprecedented quality, these data are lacking any spectral information and we are still in need of ground-based spectroscopic and/or multicolour photometric follow-up observations for a solid interpretation.Aims. The faintness of most of the observed stars and the required high signal-to-noise ratio (S/N) of spectroscopic data both imply the need to use large telescopes, access to which is limited. In this paper, we look for an alternative, and aim for the development of a technique that allows the denoising of the originally low S/N (typically, below 80) spectroscopic data, making observations of faint targets with small telescopes possible and effective.Methods. We present a generalization of the original least-squares deconvolution (LSD) method by implementing a multicomponent average profile and a line strengths correction algorithm. We tested the method on simulated and real spectra of single and binary stars, among which are two intrinsically variable objects.Results. The method was successfully tested on the high-resolution spectra of Vega and a Kepler star, KIC 04749989. Application to the two pulsating stars, 20 Cvn and HD 189631, showed that the technique is also applicable to intrinsically variable stars: the results of frequency analysis and mode identification from the LSD model spectra for both objects are in good agreement with the findings from literature. Depending on the S/N of the original data and spectral characteristics of a star, the gain in S/N in the LSD model spectrum typically ranges from 5 to 15 times.Conclusions. The technique introduced in this paper allows an effective denoising of the originally low S/N spectroscopic data. The high S/N spectra obtained this way can be used to determine fundamental parameters and chemical composition of the stars. The restored LSD model spectra contain all the information on line profile variations present in the original spectra of pulsating stars, for example. The method is applicable to both high- (>30 000) and low- (<30 000) resolution spectra, although the information that can be extracted from the latter is limited by the resolving power itself.
  •  
Skapa referenser, mejla, bekava och länka
  • Resultat 1-7 av 7

Kungliga biblioteket hanterar dina personuppgifter i enlighet med EU:s dataskyddsförordning (2018), GDPR. Läs mer om hur det funkar här.
Så här hanterar KB dina uppgifter vid användning av denna tjänst.

 
pil uppåt Stäng

Kopiera och spara länken för att återkomma till aktuell vy