SwePub
Sök i SwePub databas

  Utökad sökning

Träfflista för sökning "WFRF:(Torell Frida) srt2:(2019)"

Sökning: WFRF:(Torell Frida) > (2019)

  • Resultat 1-2 av 2
Sortera/gruppera träfflistan
   
NumreringReferensOmslagsbildHitta
1.
  • Dhillon, Sundeep S., et al. (författare)
  • Metabolic profiling of zebrafish embryo development from blastula period to early larval stages
  • 2019
  • Ingår i: PLOS ONE. - San Francisco : Public Library of Science. - 1932-6203. ; 14:5
  • Tidskriftsartikel (refereegranskat)abstract
    • The zebrafish embryo is a popular model for drug screening, disease modelling and molecular genetics. In this study, samples were obtained from zebrafish at different developmental stages. The stages that were chosen were 3/4, 4/5, 24, 48, 72 and 96 hours post fertilization (hpf). Each sample included fifty embryos. The samples were analysed using gas chromatography time-of-flight mass spectrometry (GC-TOF-MS). Principle component analysis (PCA) was applied to get an overview of the data and orthogonal projection to latent structure discriminant analysis (OPLS-DA) was utilised to discriminate between the developmental stages. In this way, changes in metabolite profiles during vertebrate development could be identified. Using a GC-TOF-MS metabolomics approach it was found that nucleotides and metabolic fuel (glucose) were elevated at early stages of embryogenesis, whereas at later stages amino acids and intermediates in the Krebs cycle were abundant. This agrees with zebrafish developmental biology, as organs such as the liver and pancreas develop at later stages. Thus, metabolomics of zebrafish embryos offers a unique opportunity to investigate large scale changes in metabolic processes during important developmental stages in vertebrate development. In terms of stability of the metabolic profile and viability of the embryos, it was concluded at 72 hpf was a suitable time point for the use of zebrafish as a model system in numerous scientific applications.
  •  
2.
  • Torell, Frida, et al. (författare)
  • Cytokine Profiles in Autoantibody Defined Subgroups of Systemic Lupus Erythematosus
  • 2019
  • Ingår i: Journal of Proteome Research. - : American Chemical Society (ACS). - 1535-3893 .- 1535-3907. ; 18:3, s. 1208-1217
  • Tidskriftsartikel (refereegranskat)abstract
    • The aim of this study was to evaluate how the cytokine profiles differed between autoantibody based subgroups of systemic lupus erythematosus (SLE). SLE is a systemic autoimmune disease, characterized by periods of flares (active disease) and remission (inactive disease). The disease can affect many organ systems, e.g., skin, joints, kidneys, heart, and the central nervous system (CNS). SLE patients often have an overproduction of cytokines, e.g., interferons, chemokines, and interleukins. The high cytokine levels are part of the systemic inflammation, which can lead to tissue injury. In the present study, SLE patients were divided into five groups based on their autoantibody profiles. We thus defined these five groups: ANA negative, antiphospholipid (aPL) positive, anti-Sm/anti-RNP positive, Sjögren’s syndrome (SS) antigen A and B positive, and patients positive for more than one type of autoantibodies (other SLE). Cytokines were measured using Mesoscale Discovery (MSD) multiplex analysis. On the basis of the cytokine data, ANA negative patients were the most deviating subgroup, with lower levels of interferon (IFN)-γ, tumor necrosis factor (TNF)-α, interleukin (IL)-12/IL-23p40, and interferon gamma-induced protein (IP)-10. Despite low cytokine levels in the ANA negative group, autoantibody profiles did not discriminate between different cytokine patterns.
  •  
Skapa referenser, mejla, bekava och länka
  • Resultat 1-2 av 2

Kungliga biblioteket hanterar dina personuppgifter i enlighet med EU:s dataskyddsförordning (2018), GDPR. Läs mer om hur det funkar här.
Så här hanterar KB dina uppgifter vid användning av denna tjänst.

 
pil uppåt Stäng

Kopiera och spara länken för att återkomma till aktuell vy