SwePub
Sök i SwePub databas

  Utökad sökning

Träfflista för sökning "WFRF:(Trinchero P.) srt2:(2020-2022)"

Sökning: WFRF:(Trinchero P.) > (2020-2022)

  • Resultat 1-13 av 13
Sortera/gruppera träfflistan
   
NumreringReferensOmslagsbildHitta
1.
  • Aprile, E., et al. (författare)
  • Double-weak decays of 124Xe and 136Xe in the XENON1T and XENONnT experiments
  • 2022
  • Ingår i: Physical Review C. - 2469-9985 .- 2469-9993. ; 106:2
  • Tidskriftsartikel (refereegranskat)abstract
    • We present results on the search for two-neutrino double-electron capture (2νECEC) of 124Xe and neutrinoless double-β decay (0νββ) of 136Xe in XENON1T. We consider captures from the K shell up to the N shell in the 2νECEC signal model and measure a total half-life of T2νECEC1/2=(1.1±0.2stat±0.1sys)×1022yr with a 0.87 kg yr isotope exposure. The statistical significance of the signal is 7.0σ. We use XENON1T data with 36.16 kg yr of 136Xe exposure to search for 0νββ. We find no evidence of a signal and set a lower limit on the half-life of T0νββ1/2>1.2×1024 yr at 90%CL. This is the best result from a dark matter detector without an enriched target to date. We also report projections on the sensitivity of XENONnT to 0νββ. Assuming a 275 kg yr 136Xe exposure, the expected sensitivity is T0νββ1/2>2.1×1025 yr at 90%CL, corresponding to an effective Majorana mass range of ⟨mββ⟩<(0.19–0.59)eV/c2.
  •  
2.
  • Aprile, E., et al. (författare)
  • Search for New Physics in Electronic Recoil Data from XENONnT
  • 2022
  • Ingår i: Physical Review Letters. - : American Physical Society. - 0031-9007 .- 1079-7114. ; 129:16
  • Tidskriftsartikel (refereegranskat)abstract
    • We report on a blinded analysis of low-energy electronic recoil data from the first science run of the XENONnT dark matter experiment. Novel subsystems and the increased 5.9 ton liquid xenon target reduced the background in the (1, 30) keV search region to (15.8±1.3)  events/(ton×year×keV), the lowest ever achieved in a dark matter detector and ∼5 times lower than in XENON1T. With an exposure of 1.16 ton-years, we observe no excess above background and set stringent new limits on solar axions, an enhanced neutrino magnetic moment, and bosonic dark matter.
  •  
3.
  • Aprile, E., et al. (författare)
  • An approximate likelihood for nuclear recoil searches with XENON1T data
  • 2022
  • Ingår i: European Physical Journal C. - : Springer Science and Business Media LLC. - 1434-6044 .- 1434-6052. ; 82:11
  • Tidskriftsartikel (refereegranskat)abstract
    • The XENON collaboration has published stringent limits on specific dark matter – nucleon recoil spectra from dark matter recoiling on the liquid xenon detector target. In this paper, we present an approximate likelihood for the XENON1T 1 t-year nuclear recoil search applicable to any nuclear recoil spectrum. Alongside this paper, we publish data and code to compute upper limits using the method we present. The approximate likelihood is constructed in bins of reconstructed energy, profiled along the signal expectation in each bin. This approach can be used to compute an approximate likelihood and therefore most statistical results for any nuclear recoil spectrum. Computing approximate results with this method is approximately three orders of magnitude faster than the likelihood used in the original publications of XENON1T, where limits were set for specific families of recoil spectra. Using this same method, we include toy Monte Carlo simulation-derived binwise likelihoods for the upcoming XENONnT experiment that can similarly be used to assess the sensitivity to arbitrary nuclear recoil signatures in its eventual 20 t-year exposure.
  •  
4.
  • Aprile, E., et al. (författare)
  • Emission of single and few electrons in XENON1T and limits on light dark matter
  • 2022
  • Ingår i: Physical Review D. - 2470-0010 .- 2470-0029. ; 106:2
  • Tidskriftsartikel (refereegranskat)abstract
    • Delayed single- and few-electron emissions plague dual-phase time projection chambers, limiting their potential to search for light-mass dark matter. This paper examines the origins of these events in the XENON1T experiment. Characterization of the intensity of delayed electron backgrounds shows that the resulting emissions are correlated, in time and position, with high-energy events and can effectively be vetoed. In this work we extend previous S2-only analyses down to a single electron. From this analysis, after removing the correlated backgrounds, we observe rates <30 events/(electron×kg×day) in the region of interest spanning 1 to 5 electrons. We derive 90% confidence upper limits for dark matter-electron scattering, first direct limits on the electric dipole, magnetic dipole, and anapole interactions, and bosonic dark matter models, where we exclude new parameter space for dark photons and solar dark photons.
  •  
5.
  • Aprile, E., et al. (författare)
  • Energy resolution and linearity of XENON1T in the MeV energy range
  • 2020
  • Ingår i: European Physical Journal C. - : Springer Science and Business Media LLC. - 1434-6044 .- 1434-6052. ; 80:8
  • Tidskriftsartikel (refereegranskat)abstract
    • Xenon dual-phase time projection chambers designed to search for weakly interacting massive particles have so far shown a relative energy resolutionwhich degrades with energy above similar to 200 keV due to the saturation effects. This has limited their sensitivity in the search for rare events like the neutrinoless double-beta decay of Xe-136 at its Q value, Q(beta beta) similar or equal to 2.46 MeV. For the XENON1T dual-phase time projection chamber, we demonstrate that the relative energy resolution at 1 sigma/mu is as low as (0.80 +/- 0.02)% in its one-ton fiducial mass, and for single-site interactions at Q(beta beta). We also present a new signal correction method to rectify the saturation effects of the signal readout system, resulting in more accurate position reconstruction and indirectly improving the energy resolution. The very good result achieved in XENON1T opens up new windows for the xenon dual-phase dark matter detectors to simultaneously search for other rare events.
  •  
6.
  • Aprile, E., et al. (författare)
  • Material radiopurity control in the XENONnT experiment
  • 2022
  • Ingår i: European Physical Journal C. - : Springer Science and Business Media LLC. - 1434-6044 .- 1434-6052. ; 82:7
  • Tidskriftsartikel (refereegranskat)abstract
    • The selection of low-radioactive construction materials is of the utmost importance for rare-event searches and thus critical to the XENONnT experiment. Results of an extensive radioassay program are reported, in which material samples have been screened with gamma-ray spectroscopy, mass spectrometry, and 222Rn emanation measurements. Furthermore, the cleanliness procedures applied to remove or mitigate surface contamination of detector materials are described. Screening results, used as inputs for a XENONnT Monte Carlo simulation, predict a reduction of materials background (∼∼17%) with respect to its predecessor XENON1T. Through radon emanation measurements, the expected 222Rn activity concentration in XENONnT is determined to be 4.2 (+0.5−0.7) μBq/kg, a factor three lower with respect to XENON1T. This radon concentration will be further suppressed by means of the novel radon distillation system.
  •  
7.
  • Aprile, E., et al. (författare)
  • Application and modeling of an online distillation method to reduce krypton and argon in XENON1T
  • 2022
  • Ingår i: Progress of Theoretical and Experimental Physics. - : Oxford University Press (OUP). - 2050-3911. ; 2022:5
  • Tidskriftsartikel (refereegranskat)abstract
    • A novel online distillation technique was developed for the XENON1T dark matter experiment to reduce intrinsic background components more volatile than xenon, such as krypton or argon, while the detector was operating. The method is based on a continuous purification of the gaseous volume of the detector system using the XENON1T cryogenic distillation column. A krypton-in-xenon concentration of (360 +/- 60) ppq was achieved. It is the lowest concentration measured in the fiducial volume of an operating dark matter detector to date. A model was developed and fitted to the data to describe the krypton evolution in the liquid and gas volumes of the detector system for several operation modes over the time span of 550 days, including the commissioning and science runs of XENON1T. The online distillation was also successfully applied to remove Ar-37 after its injection for a low-energy calibration in XENON1T. This makes the usage of Ar-37 as a regular calibration source possible in the future. The online distillation can be applied to next-generation liquid xenon time projection chamber experiments to remove krypton prior to, or during, any science run. The model developed here allows further optimization of the distillation strategy for future large-scale detectors.
  •  
8.
  • Aprile, E., et al. (författare)
  • Excess electronic recoil events in XENON1T
  • 2020
  • Ingår i: Physical Review D. - 1550-7998 .- 1550-2368. ; 102:7
  • Tidskriftsartikel (refereegranskat)abstract
    • We report results from searches for new physics with low-energy electronic recoil data recorded with the XENONIT detector. With an exposure of 0.65 tonne-years and an unprecedentedly low background rate of 76 +/- 2(stat) events/(tonne x year x keV) between 1 and 30 keV, the data enable one of the most sensitive searches for solar axions, an enhanced neutrino magnetic moment using solar neutrinos, and bosonic dark matter. An excess over known backgrounds is observed at low energies and most prominent between 2 and 3 keV. The solar axion model has a 3.4 sigma significance, and a three-dimensional 90% confidence surface is reported for axion couplings to electrons, photons, and nucleons. This surface is inscribed in the cuboid defined by g(ae) < 3.8 x 10(-12), g(ae)g(an)(eff) < 4.8 x 10(-18), and g(ae)g(a gamma) < 7.7 x 10(-22) GeV-1, and excludes either g(ae) = 0 or g(ae)g(a gamma) = g(ae)ge(an)(eff), = 0. The neutrino magnetic moment signal is similarly favored over background at 3.2 sigma, and a confidence interval of mu(nu) is an element of (1.4, 2.9) x 10(-11) mu(B) (90% C.L.) is reported. Both results are in strong tension with stellar constraints. The excess can also be explained by beta decays of tritium at 3.2 sigma significance with a corresponding tritium concentration in xenon of (6.2 +/- 2.0) x 10(-25) mol/mol. Such a trace amount can neither be confirmed nor excluded with current knowledge of its production and reduction mechanisms. The significances of the solar axion and neutrino magnetic moment hypotheses arc decreased to 2.0 sigma and 0.9 sigma, respectively, if an unconstrained tritium component is included in the fitting. With respect to bosonic dark matter, the excess favors a monoenergetic peak at (2.3 +/- 0.2) keV (68% C.L.) with a 3.0 sigma global (4.0 sigma local) significance over background. This analysis sets the most restrictive direct constraints to date on pseudoscalar and vector bosonic dark matter for most masses between 1 and 210 keV/c(2). We also consider the possibility that Ar-37 may be present in the detector, yielding a 2.82 keV peak from electron capture. Contrary to tritium, the Ar-37 concentration can be tightly constrained and is found to be negligible.
  •  
9.
  • Aprile, E., et al. (författare)
  • Projected WIMP sensitivity of the XENONnT dark matter experiment
  • 2020
  • Ingår i: Journal of Cosmology and Astroparticle Physics. - : IOP Publishing. - 1475-7516. ; :11
  • Tidskriftsartikel (refereegranskat)abstract
    • XENONnT is a dark matter direct detection experiment, utilizing 5.9 t of instrumented liquid xenon, located at the INFN Laboratori Nazionali del Gran Sasso. In this work, we predict the experimental background and project the sensitivity of XENONnT to the detection of weakly interacting massive particles (WIMPs). The expected average differential background rate in the energy region of interest, corresponding to (1, 13) keV and (4, 50) keV for electronic and nuclear recoils, amounts to 12.3 +/- 0.6 (keV t y)(-1) and (2.2 +/- 0.5) x 10(-3 )(keV t y)(-1), respectively, in a 4t fiducial mass. We compute unified confidence intervals using the profile construction method, in order to ensure proper coverage. With the exposure goal of 20 t y, the expected sensitivity to spin-independent WIMP-nucleon interactions reaches a cross-section of 1.4 x 10(-48) cm(2) for a 50 GeV/c(2) mass WIMP at 90% confidence level, more than one order of magnitude beyond the current best limit, set by XENON1T. In addition, we show that for a 50 GeV/c(2) WIMP with cross-sections above 2.6 x 10(-48) cm(2) (5.0 x 10(-48) cm(2)) the median XENONnT discovery significance exceeds 3 sigma (5 sigma). The expected sensitivity to the spin-dependent WIMP coupling to neutrons (protons) reaches 2.2 x 10(-43) cm(2) (6.0 x 10(-42) cm(2)).
  •  
10.
  • Aprile, E., et al. (författare)
  • Search for Coherent Elastic Scattering of Solar B-8 Neutrinos in the XENON1T Dark Matter Experiment
  • 2021
  • Ingår i: Physical Review Letters. - 0031-9007 .- 1079-7114. ; 126:9
  • Tidskriftsartikel (refereegranskat)abstract
    • We report on a search for nuclear recoil signals from solar B-8 neutrinos elastically scattering off xenon nuclei in XENON1T data, lowering the energy threshold from 2.6 to 1.6 keV. We develop a variety of novel techniques to limit the resulting increase in backgrounds near the threshold. No significant B-8 neutrinolike excess is found in an exposure of 0.6 t x y. For the first time, we use the nondetection of solar neutrinos to constrain the light yield from 1-2 keV nuclear recoils in liquid xenon, as well as nonstandard neutrino-quark interactions. Finally, we improve upon world-leading constraints on dark matter-nucleus interactions for dark matter masses between 3 and 11 GeV c(-2) by as much as an order of magnitude.
  •  
11.
  • Aprile, E., et al. (författare)
  • Search for inelastic scattering of WIMP dark matter in XENON1T
  • 2021
  • Ingår i: Physical Review D. - 2470-0010 .- 2470-0029. ; 103:6
  • Tidskriftsartikel (refereegranskat)abstract
    • We report the results of a search for the inelastic scattering of weakly interacting massive particles (WIMPs) in the XENON1T dark matter experiment. Scattering off Xe-129 is the most sensitive probe of inelastic WIMP interactions, with a signature of a 39.6 keV deexcitation photon detected simultaneously with the nuclear recoil. Using an exposure of 0.83 tonne-years, we find no evidence of inelastic WIMP scattering with a significance of more than 2 sigma. A profile-likelihood ratio analysis is used to set upper limits on the cross section of WIMP-nucleus interactions. We exclude new parameter space for WIMPs heavier than 100 GeV/c(2), with the strongest upper limit of 3.3 x 10(-39) cm(2) for 130 GeV/c(2) WIMPs at 90% confidence level.
  •  
12.
  • Soler, J. M., et al. (författare)
  • Predictive Modeling of a Simple Field Matrix Diffusion Experiment Addressing Radionuclide Transport in Fractured Rock. Is It So Straightforward?
  • 2022
  • Ingår i: Nuclear Technology. - : Informa UK Limited. - 0029-5450 .- 1943-7471. ; 208:6, s. 1059-1073
  • Tidskriftsartikel (refereegranskat)abstract
    • The SKB GroundWater Flow and Transport of Solutes Task Force is an international forum in the area of conceptual and numerical modeling of groundwater flow and solute transport in fractured rocks relevant for the deep geological disposal of radioactive waste. Two in situ matrix diffusion experiments in crystalline rock (gneiss) were performed at POSIVA’s ONKALO underground facility in Finland. Synthetic groundwater containing several conservative and sorbing radiotracers was injected at one end of a borehole interval and flowed along a thin annulus toward the opposite end. Several teams performed predictive modeling of the tracer breakthrough curves using “conventional” modeling approaches (constant diffusion and sorption in the rock, no or minimum rock heterogeneity). Supporting information, derived from small-scale laboratory experiments, was provided. The teams were free to implement different concepts, use different codes, and apply the transport and retention parameters that they considered to be most suited (i.e., not a benchmark exercise). The main goal was the comparison of the different sets of results and the analysis of the possible differences for this relatively simple experimental setup with a well-defined geometry. Even though the experiment was designed to study matrix diffusion, the calculated peaks of the breakthrough curves were very sensitive to the assumed magnitude of dispersion in the borehole annulus. However, given the very different timescales for advection and matrix diffusion, the tails of the curves provided information concerning diffusion and retention in the rock matrix regardless of the magnitude of dispersion. In addition, although the task was designed to be a blind modeling exercise, the model results have also been compared to the measured experimental breakthroughs. Experimental results tend to show relatively small activities, wide breakthroughs, and early first arrivals, which are somewhat similar to model results using large dispersivity values. 
  •  
13.
  • Trinchero, P., et al. (författare)
  • A Particle-Based Conditional Sampling Scheme for the Simulation of Transport in Fractured Rock With Diffusion Into Stagnant Water and Rock Matrix
  • 2020
  • Ingår i: Water resources research. - : American Geophysical Union (AGU). - 0043-1397 .- 1944-7973. ; 56:4
  • Tidskriftsartikel (refereegranskat)abstract
    • In situ experiments and field-scale characterization studies have pointed out that, in fractured crystalline media, groundwater flow is highly channelized. This implies that, at the scale of a single fracture, only part of the fracture surface area is in contact with flowing water, while the rest of in-plane water is essentially stagnant and can be accessed by solutes via molecular diffusion. Despite their importance for contaminant retention, to date, there are no numerical or analytical approaches that could be used to assess the implication of stagnant water zones on solute transport in realistic large-scale Discrete Fracture Network-based models. Here, we present an efficient and flexible algorithm for the simulation of transport in fractured rock with diffusion into stagnant water and rock matrix. The algorithm is a generalization of a previously developed numerical framework for time domain particle tracking in sparsely fractured rock. The key of the generalization is that total time in fracture (τf) is first evaluated using a Monte Carlo sampling and then a second sampling is performed conditioned on τf. The algorithm has been successfully validated against existing independent solutions and the implication of diffusion into stagnant water and secondary diffusion into the matrix has been assessed for a realistic modeling scenario. The results show that, due to diffusion into stagnant water, contaminants are more strongly retarded. This increased retention is more significant for sorbing species, as a larger number of sorption sites is accessible. A high sensitivity to the flowing channel/stagnant water zone geometry has also been observed.
  •  
Skapa referenser, mejla, bekava och länka
  • Resultat 1-13 av 13

Kungliga biblioteket hanterar dina personuppgifter i enlighet med EU:s dataskyddsförordning (2018), GDPR. Läs mer om hur det funkar här.
Så här hanterar KB dina uppgifter vid användning av denna tjänst.

 
pil uppåt Stäng

Kopiera och spara länken för att återkomma till aktuell vy