SwePub
Sök i SwePub databas

  Utökad sökning

Träfflista för sökning "WFRF:(Trinchero Paolo) srt2:(2022)"

Sökning: WFRF:(Trinchero Paolo) > (2022)

  • Resultat 1-2 av 2
Sortera/gruppera träfflistan
   
NumreringReferensOmslagsbildHitta
1.
  • Gylling, Björn, et al. (författare)
  • SKB Task Force GWFTS : Lessons Learned from Modeling Field Tracer Experiments in Finland and Sweden
  • 2022
  • Konferensbidrag (refereegranskat)abstract
    • SKB and several other waste management organizations have established the international SKB Task Force on Modeling of Groundwater Flow and Transport of Solutes (TF GWFTS) to support and interpret field experiments. Objectives of the task force are to develop, test and improve tools for conceptual understanding and simulating groundwater flow and transport of solutes in fractured rocks. Work is organized in collaborative modeling tasks. Task 9 focuses on realistic modeling of coupled matrix diffusion and sorption in heterogeneous crystalline rock matrix at depth, e.g. by inverse and predictive modeling of in-situ transport experiments. Posiva’s REPRO (rock matrix REtention PROperties) experimental campaign has been performed at the ONKALO rock characterization facility in Finland. The two REPRO experiments considered were the Water Phase Diffusion Experiment (WPDE), addressing matrix diffusion in gneiss around a single borehole interval (modeled in Task 9A), and the Through Diffusion Experiment, which is performed between sections of three boreholes and addressed by modeling in Task 9C. The Long-Term Diffusion and Sorption Experiment (LTDE-SD) was an in-situ radionuclide tracer test performed at the Swedish Äspö Hard Rock Laboratory at a depth of about 410 m below sea level. The experimental results indicated a possible deeper penetration of sorbing tracers into the rock matrix than expected. The shape of these tracer penetration profiles was difficult to reproduce. This experiment was modeled and interpreted in Task 9B. Task 9D is addressing the possible benefits of detailed models of the in-situ experiments in safety assessment calculations. The task is performed by upscaling of the WPDE models to conditions applicable for nuclear waste repositories. As Task 9 is now in a finalization process, a number of lessons learned from the 4 sub-tasks have been identified. These include: • field tracer experiments can provide surprises even when well designed and executed, • interaction between the experimentalists and modelers is important and mutually beneficial when investigating anomalous results, • differences in conceptual models have the greatest impact on model outcomes, • it is not trivial to go from modeling of field experiments to safety assessment modeling without making substantial simplifications.
  •  
2.
  • Soler, Josep, et al. (författare)
  • Modelling of the LTDE-SD radionuclide diffusion experiment in crystalline rock at the Aspo Hard Rock Laboratory (Sweden)
  • 2022
  • Ingår i: Geologica Acta. - : Universitat Autònoma de Barcelona. - 1695-6133 .- 1696-5728. ; 20, s. 1-32
  • Tidskriftsartikel (refereegranskat)abstract
    • This study shows a comparison and analysis of results from a modelling exercise concerning a field experiment involving the transport and retention of different radionuclide tracers in crystalline rock. This exercise was performed within the Swedish Nuclear Fuel and Waste Management Company (SKB) Task Force on Modelling of Groundwater Flow and Transport of Solutes (Task Force GWFTS). Task 9B of the Task Force GWFTS was the second subtask within Task 9 and focused on the modelling of experimental results from the Long Term Sorption Diffusion Experiment in situ tracer test. The test had been performed at a depth of about 410m in the Aspo Hard Rock Laboratory. Synthetic groundwater containing a cocktail of radionuclide tracers was circulated for 198 days on the natural surface of a fracture and in a narrow slim hole drilled in unaltered rock matrix. Overcoring of the rock after the end of the test allowed for the measurement of tracer distribution profiles in the rock from the fracture surface (A cores) and also from the slim hole (D cores). The measured tracer activities in the rock samples showed long profiles (several cm) for non-or weakly-sorbing tracers (Cl-36, Na-22), but also for many of the more strongly-sorbing radionuclides. The understanding of this unexpected feature was one of the main motivations for this modelling exercise. However, re-evaluation and revision of the data during the course of Task 9B provided evidence that the anomalous long tails at low activities for strongly sorbing tracers were artefacts due to cross-contamination during rock sample preparation. A few data points remained for Cs-137, Ba-133, Ni-63 and Cd-109, but most measurements at long distances from the tracer source (>10mm) were now below the reported detection limits. Ten different modelling teams provided results for this exercise, using different concepts and codes. The tracers that were finally considered were Na-22, Cl-36, Co-57, Ni-63, Ba-133, Cs-137, Cd-109, Ra-226 and Np-237. Three main types of models were used: i) analytical solutions to the transport-retention equations, ii) continuum -porous-medium numerical models, and iii) microstructure-based models accounting for small-scale heterogeneity (i.e. mineral grains, porosities and/or microfracture distributions) and potential centimetre-scale fractures. The modelling by the different teams led to some important conclusions, concerning for instance the presence of a disturbed zone (a few mm in thickness) next to the fracture surface and to the wall of the slim hole and the role of micro-fractures and cm-scale fractures in the transport of weakly sorbing tracers. These conclusions could be reached after the re-evaluation and revision of the experimental data (tracer profiles in the rock) and the analysis of the different sets of model results provided by the different teams.
  •  
Skapa referenser, mejla, bekava och länka
  • Resultat 1-2 av 2

Kungliga biblioteket hanterar dina personuppgifter i enlighet med EU:s dataskyddsförordning (2018), GDPR. Läs mer om hur det funkar här.
Så här hanterar KB dina uppgifter vid användning av denna tjänst.

 
pil uppåt Stäng

Kopiera och spara länken för att återkomma till aktuell vy