SwePub
Sök i SwePub databas

  Utökad sökning

Träfflista för sökning "WFRF:(Trohidou Kalliopi) srt2:(2020)"

Sökning: WFRF:(Trohidou Kalliopi) > (2020)

  • Resultat 1-2 av 2
Sortera/gruppera träfflistan
   
NumreringReferensOmslagsbildHitta
1.
  • Sanchez, Elena H., et al. (författare)
  • Simultaneous Individual and Dipolar Collective Properties in Binary Assemblies of Magnetic Nanoparticles
  • 2020
  • Ingår i: Chemistry of Materials. - : American Chemical Society (ACS). - 1520-5002 .- 0897-4756. ; 32:3, s. 969-981
  • Tidskriftsartikel (refereegranskat)abstract
    • Applications based on aggregates of magnetic nanoparticles are becoming increasingly widespread, ranging from hyperthermia to magnetic recording. However, although some uses require collective behavior, others need a more individual-like response, the conditions leading to either of these behaviors are still poorly understood. Here, we use nanoscale-uniform binary random dense mixtures with different proportions of oxide magnetic nanoparticles with low/high anisotropy as a valuable tool to explore the crossover from individual to collective behavior. Two different anisotropy scenarios have been studied in two series of binary compacts: M1, comprising maghemite (gamma-Fe2O3) nanoparticles of different sizes (9.0 nm/11.5 nm) with barely a factor of 2 between their anisotropy energies, and M2, mixing equally sized pure maghemite (low-anisotropy) and Co-doped maghemite (high-anisotropy) nanoparticles with a large difference in anisotropy energy (ratio > 8). Interestingly, while the M1 series exhibits collective behavior typical of strongly coupled dipolar systems, the M2 series presents a more complex scenario where different magnetic properties resemble either "individual-like" or "collective", crucially emphasizing that the collective character must be ascribed to specific properties and not to the system as a whole. The strong differences between the two series offer new insight (systematically ratified by simulations) into the subtle interplay between dipolar interactions, local anisotropy and sample heterogeneity to determine the behavior of dense assemblies of magnetic nanoparticles.
  •  
2.
  • Vasilakaki, Marianna, et al. (författare)
  • Effect of albumin mediated clustering on the magnetic behavior of MnFe2O4 nanoparticles : experimental and theoretical modeling study
  • 2020
  • Ingår i: Nanotechnology. - : IOP Publishing. - 0957-4484 .- 1361-6528. ; 31:2
  • Tidskriftsartikel (refereegranskat)abstract
    • Over the last two decades, iron oxide based nanoparticles ferrofluids have attracted significant attention for a wide range of applications. For the successful use of these materials in biotechnology and energy, surface coating and specific functionalization is critical to achieve high dispersibility and colloidal stability of the nanoparticles in the ferrofluids. In view of this, the magnetic behavior of clusters of ultra-small MnFe2O4 nanoparticles covered by bovine serum albumin, which is known as a highly biocompatible and environmentally friendly surfactant, is investigated by magnetization measurements, and numerical simulations at an atomic and mesoscopic scale. The coating process with albumin produces a change in the structure, actual size and shape distribution of clusters of exchange coupled particles, giving rise to a distribution of blocking temperatures. The coated system exhibits a superspin glass (SSG) behavior with the SSG freezing temperatures similar to the uncoated ones, providing evidence that the strength of the dipolar interactions is not affected by the presence of the albumin. The DFT calculations show that the albumin coating reduces the surface anisotropy and the saturation magnetization in the nanoparticles leading to lower values of the coercive field in agreement with the experimental findings. Our results clearly demonstrate that the albumin coated clusters of MnFe2O4 particles are ideal systems for energy and biomedical applications since colloidal and thermal stability as well as biosafety is obtained through the albumin coating.
  •  
Skapa referenser, mejla, bekava och länka
  • Resultat 1-2 av 2

Kungliga biblioteket hanterar dina personuppgifter i enlighet med EU:s dataskyddsförordning (2018), GDPR. Läs mer om hur det funkar här.
Så här hanterar KB dina uppgifter vid användning av denna tjänst.

 
pil uppåt Stäng

Kopiera och spara länken för att återkomma till aktuell vy