SwePub
Sök i SwePub databas

  Utökad sökning

Träfflista för sökning "WFRF:(Ullah Muhammad Kaleem) srt2:(2019)"

Sökning: WFRF:(Ullah Muhammad Kaleem) > (2019)

  • Resultat 1-3 av 3
Sortera/gruppera träfflistan
   
NumreringReferensOmslagsbildHitta
1.
  • Ullah, Muhammad Kaleem, et al. (författare)
  • Tri-doped ceria (M0.2Ce0.8O2-δ, M= Sm0.1 Ca0.05 Gd0.05) electrolyte for hydrogen and ethanol-based fuel cells
  • 2019
  • Ingår i: Journal of Alloys and Compounds. - : Elsevier BV. - 0925-8388. ; 773, s. 548-554
  • Tidskriftsartikel (refereegranskat)abstract
    • In recent scientific research, an interest has been gained significantly by rare earth metals such as cerium (Ce), samarium (Sm) and gadolinium (Gd) due to their use in fuel cells as electrolyte and catalysts. When used in an electrolyte, these materials lower the fuel cell's operating temperature compared to a conventional electrolyte, for example, yittria-stabilized zirconia (YSZ) which operates at a high temperature (≥800 °C). In this paper, the tri-doped ceria, M0.2Ce0.8O2-δ(M = Sm0.1Ca0.05Gd0.05) electrolyte powders was synthesized using the co-precipitation method at 80 °C. These dopants were used for CeO2with a total molar ratio of 1 M. Dry-pressed powder technique was used to make fuel cell pellets from the powder and placed them in the furnace to sinter at 700 °C for 60 min. Electrical conductivity of such a pellet in air was 1.2 × 10−2S cm−1at 700 °C measured by the ProboStat-NorECs setup. The crystal structure was determined with the help of X-ray diffraction (XRD), which showed that all the dopants were successfully doped in CeO2. Raman spectroscopy and UV-VIS spectroscopy were also carried out to analyse the molecular vibrations and absorbance, respectively. The maximum open-circuit voltages (OCVs) for hydrogen and ethanol fuelled at 550 °C were observed to be 0.89 V and 0.71 V with power densities 314 mW cm−2and 52.8 mW cm−2, respectively.
  •  
2.
  •  
3.
  • Ali, Amjad, et al. (författare)
  • Promising electrochemical study of titanate based anodes in direct carbon fuel cell using walnut and almond shells biochar fuel
  • 2019
  • Ingår i: Journal of Power Sources. - : ELSEVIER. - 0378-7753 .- 1873-2755. ; 434
  • Tidskriftsartikel (refereegranskat)abstract
    • The direct carbon fuel cell (DCFC) is an efficient device that converts the carbon fuel directly into electricity with 100% theoretical efficiency contrary to practical efficiency around 60%. In this paper four perovskite anode materials La0.4Sr0.6M0.09Ti0.91O3-delta (M = Ni, Fe, Co, Zn) have been prepared using sol-gel technique to measure the performance of the device using solid fuel. These materials have shown reasonable stability and conductivity at 700 degrees C. Further structural analysis of as-prepared anode material using XRD technique reveals a single cubic perovskite structure with average crystallite size roughly 47 nm. Walnut and almond shells biochar have also been examined as a fuel in DCFC at the temperature range 400-700 degrees C. In addition, Elemental analysis of walnut and almond shells has shown high carbon content and low nitrogen and sulfur contents in the obtained biochar. Subsequently, the superior stability of as-prepared anode materials is evident by thermogravimetric analysis in pure N-2 gas atmosphere. Conversely, the LSFT anode has shown the highest electronic conductivity of 7.53Scm(-1) at 700 degrees C. The obtained power density for LSFTO3-delta composite anode mixed in sub-bituminous coal, walnut and almond shells biochar is of 68, 55, 48 mWcm(-2) respectively. A significant improvement in performance of DCFC (78 mWcm(-2)) was achieved.
  •  
Skapa referenser, mejla, bekava och länka
  • Resultat 1-3 av 3

Kungliga biblioteket hanterar dina personuppgifter i enlighet med EU:s dataskyddsförordning (2018), GDPR. Läs mer om hur det funkar här.
Så här hanterar KB dina uppgifter vid användning av denna tjänst.

 
pil uppåt Stäng

Kopiera och spara länken för att återkomma till aktuell vy