SwePub
Sök i SwePub databas

  Utökad sökning

Träfflista för sökning "WFRF:(Ulvgård Liselotte) srt2:(2017)"

Sökning: WFRF:(Ulvgård Liselotte) > (2017)

  • Resultat 1-3 av 3
Sortera/gruppera träfflistan
   
NumreringReferensOmslagsbildHitta
1.
  •  
2.
  • Frost, Anna E., et al. (författare)
  • Partial Stator Overlap in a Linear Generator for Wave Power : An Experimental Study
  • 2017
  • Ingår i: Journal of Marine Science and Engineering. - : MDPI AG. - 2077-1312. ; 5:4
  • Tidskriftsartikel (refereegranskat)abstract
    • This paper presents a study on how the power absorption and damping in a linear generator for wave energy conversion are affected by partial overlap between stator and translator. The theoretical study shows that the electrical power as well as the damping coefficient change quadratically with partial stator overlap, if inductance, friction and iron losses are assumed independent of partial stator overlap or can be neglected. Results from onshore experiments on a linear generator for wave energy conversion cannot reject the quadratic relationship. Measurements were done on the inductance of the linear generator and no dependence on partial stator overlap could be found. Simulations of the wave energy converter's operation in high waves show that entirely neglecting partial stator overlap will overestimate the energy yield and underestimate the peak forces in the line between the buoy and the generator. The difference between assuming a linear relationship instead of a quadratic relationship is visible but small in the energy yield in the simulation. Since the theoretical deduction suggests a quadratic relationship, this is advisable to use during modeling. However, a linear assumption could be seen as an acceptable simplification when modeling since other relationships can be computationally costly.
  •  
3.
  • Ulvgård, Liselotte (författare)
  • Wave Energy Converters : An experimental approach to onshore testing, deployments and offshore monitoring
  • 2017
  • Doktorsavhandling (övrigt vetenskapligt/konstnärligt)abstract
    • The wave energy converter (WEC) concept developed at Uppsala University consists of a point absorbing buoy, directly connected to a permanent magnet linear generator. Since 2006, over a dozen full scale WECs have been deployed at the Lysekil Research Site, on the west coast of Sweden. Beyond the development of the WEC concept itself, the full scale approach enables, and requires, experimental and multidisciplinary research within several peripheral areas, such as instrumentation, offshore operations, and wave power infrastructure.This thesis addresses technical challenges of testing, deploying and monitoring full scale WECs. It is divided accordingly into three topics: offshore measurement systems, onshore WEC testing and deployments. Each topic presents new or improved technical solutions to enable offshore wave power research.For the offshore measurement systems, a new portable data acquisition unit was developed, together with a new sensor system to be installed inside the WEC. The developed system offers a cheap and flexible option for short term offshore measurement ventures, when or where site infrastructure is not available. The system has been developed and tested during both onshore and offshore experiments, with promising results.On the topic of onshore WEC testing, the thesis presents an experimental approach for assessing the power take-off (PTO) damping of the WEC. In previous experimental studies, it has been measured via the generated electrical power, which neglects both mechanical losses and iron losses. Consequently, the full PTO force acting on the WEC has been underestimated. The thesis presents experimentally attained trends for the speed dependence of the PTO damping at different resistive loads, as measured from both generated electric power and from measurements of the buoy line force. A study was also performed on how the generator damping is affected by partial stator overlap, which varies with the translator position. In order to assess how the characterized damping behavior will affect the WEC operation at sea, two simulation case studies were performed.Finally, the thesis presents a new WEC deployment method, which has been developed through several deployment trials. By using only a tugboat, a WEC unit is transported and deployed, together with its buoy, in less than half a day. The procedure has proven to be faster, cheaper and safer than the previously used methods.
  •  
Skapa referenser, mejla, bekava och länka
  • Resultat 1-3 av 3

Kungliga biblioteket hanterar dina personuppgifter i enlighet med EU:s dataskyddsförordning (2018), GDPR. Läs mer om hur det funkar här.
Så här hanterar KB dina uppgifter vid användning av denna tjänst.

 
pil uppåt Stäng

Kopiera och spara länken för att återkomma till aktuell vy