SwePub
Sök i SwePub databas

  Utökad sökning

Träfflista för sökning "WFRF:(Urrutia A O) srt2:(2020-2023)"

Sökning: WFRF:(Urrutia A O) > (2020-2023)

  • Resultat 1-8 av 8
Sortera/gruppera träfflistan
   
NumreringReferensOmslagsbildHitta
1.
  •  
2.
  •  
3.
  •  
4.
  •  
5.
  • Bousquet, Jean, et al. (författare)
  • ARIA digital anamorphosis : Digital transformation of health and care in airway diseases from research to practice
  • 2021
  • Ingår i: Allergy. European Journal of Allergy and Clinical Immunology. - : John Wiley & Sons. - 0105-4538 .- 1398-9995. ; 76:1, s. 168-190
  • Forskningsöversikt (refereegranskat)abstract
    • Digital anamorphosis is used to define a distorted image of health and care that may be viewed correctly using digital tools and strategies. MASK digital anamorphosis represents the process used by MASK to develop the digital transformation of health and care in rhinitis. It strengthens the ARIA change management strategy in the prevention and management of airway disease. The MASK strategy is based on validated digital tools. Using the MASK digital tool and the CARAT online enhanced clinical framework, solutions for practical steps of digital enhancement of care are proposed.
  •  
6.
  • Feng, Shaohong, et al. (författare)
  • Dense sampling of bird diversity increases power of comparative genomics
  • 2020
  • Ingår i: Nature. - : Springer Science and Business Media LLC. - 0028-0836 .- 1476-4687. ; 587:7833
  • Tidskriftsartikel (refereegranskat)abstract
    • Whole-genome sequencing projects are increasingly populating the tree of life and characterizing biodiversity(1-4). Sparse taxon sampling has previously been proposed to confound phylogenetic inference(5), and captures only a fraction of the genomic diversity. Here we report a substantial step towards the dense representation of avian phylogenetic and molecular diversity, by analysing 363 genomes from 92.4% of bird families-including 267 newly sequenced genomes produced for phase II of the Bird 10,000 Genomes (B10K) Project. We use this comparative genome dataset in combination with a pipeline that leverages a reference-free whole-genome alignment to identify orthologous regions in greater numbers than has previously been possible and to recognize genomic novelties in particular bird lineages. The densely sampled alignment provides a single-base-pair map of selection, has more than doubled the fraction of bases that are confidently predicted to be under conservation and reveals extensive patterns of weak selection in predominantly non-coding DNA. Our results demonstrate that increasing the diversity of genomes used in comparative studies can reveal more shared and lineage-specific variation, and improve the investigation of genomic characteristics. We anticipate that this genomic resource will offer new perspectives on evolutionary processes in cross-species comparative analyses and assist in efforts to conserve species. A dataset of the genomes of 363 species from the Bird 10,000 Genomes Project shows increased power to detect shared and lineage-specific variation, demonstrating the importance of phylogenetically diverse taxon sampling in whole-genome sequencing.
  •  
7.
  • Lytras, T., et al. (författare)
  • Cumulative Occupational Exposures and Lung-Function Decline in Two Large General-Population Cohorts
  • 2021
  • Ingår i: Annals of the American Thoracic Society. - New York : American Thorax Society. - 1546-3222 .- 2329-6933 .- 2325-6621 .- 1943-5665. ; 18:2, s. 238-246
  • Tidskriftsartikel (refereegranskat)abstract
    • Rationale: Few longitudinal studies have assessed the relationship between occupational exposures and lung-function decline in the general population with a sufficiently long follow-up. Objectives: To examine the potential association in two large cohorts: the ECRHS (European Community Respiratory Health Survey) and the SAPALDIA (Swiss Cohort Study on Air Pollution and Lung and Heart Diseases in Adults). Methods: General-population samples of individuals aged 18 to 62 were randomly selected in 1991-1993 and followed up approximately 10 and 20 years later. Spirometry (without bronchodilation) was performed at each visit. Coded complete job histories during follow-up visits were linked to a job-exposure matrix, generating cumulative exposure estimates for 12 occupational exposures. Forced expiratory volume in 1 second (FEV1) and forced vital capacity (FVC) were jointly modeled in linear mixed-effects models, fitted in a Bayesian framework, taking into account age and smoking. Results: A total of 40,024 lung-function measurements from 17,833 study participants were analyzed. We found accelerated declines in FEV1 and the FEV1/FVC ratio for exposure to biological dust, mineral dust, and metals (FEV1 = -15.1 ml, -14.4 ml, and -18.7 ml, respectively; and FEV1/FVC ratio = -0.52%, -0.43%, and -0.36%, respectively; per 25 intensity-years of exposure). These declines were comparable in magnitude with those associated with long-term smoking. No effect modification by sex or smoking status was identified. Findings were similar between the ECRHS and the SAPALDIA cohorts. Conclusions: Our results greatly strengthen the evidence base implicating occupation, independent of smoking, as a risk factor for lung-function decline. This highlights the need to prevent or control these exposures in the workplace.
  •  
8.
  • Graco-Roza, Caio, et al. (författare)
  • Distance decay 2.0 – A global synthesis of taxonomic and functional turnover in ecological communities
  • 2022
  • Ingår i: Global Ecology and Biogeography. - : Wiley. - 1466-822X .- 1466-8238. ; 31:7, s. 1399-1421
  • Tidskriftsartikel (refereegranskat)abstract
    • Aim: Understanding the variation in community composition and species abundances (i.e., beta-diversity) is at the heart of community ecology. A common approach to examine beta-diversity is to evaluate directional variation in community composition by measuring the decay in the similarity among pairs of communities along spatial or environmental distance. We provide the first global synthesis of taxonomic and functional distance decay along spatial and environmental distance by analysing 148 datasets comprising different types of organisms and environments.Location: Global.Time period: 1990 to present.Major taxa studied: From diatoms to mammals.Method: We measured the strength of the decay using ranked Mantel tests (Mantel r) and the rate of distance decay as the slope of an exponential fit using generalized linear models. We used null models to test whether functional similarity decays faster or slower than expected given the taxonomic decay along the spatial and environmental distance. We also unveiled the factors driving the rate of decay across the datasets, including latitude, spatial extent, realm and organismal features.Results: Taxonomic distance decay was stronger than functional distance decay along both spatial and environmental distance. Functional distance decay was random given the taxonomic distance decay. The rate of taxonomic and functional spatial distance decay was fastest in the datasets from mid-latitudes. Overall, datasets covering larger spatial extents showed a lower rate of decay along spatial distance but a higher rate of decay along environmental distance. Marine ecosystems had the slowest rate of decay along environmental distances.Main conclusions: In general, taxonomic distance decay is a useful tool for biogeographical research because it reflects dispersal-related factors in addition to species responses to climatic and environmental variables. Moreover, functional distance decay might be a cost-effective option for investigating community changes in heterogeneous environments.
  •  
Skapa referenser, mejla, bekava och länka
  • Resultat 1-8 av 8

Kungliga biblioteket hanterar dina personuppgifter i enlighet med EU:s dataskyddsförordning (2018), GDPR. Läs mer om hur det funkar här.
Så här hanterar KB dina uppgifter vid användning av denna tjänst.

 
pil uppåt Stäng

Kopiera och spara länken för att återkomma till aktuell vy