SwePub
Sök i SwePub databas

  Utökad sökning

Träfflista för sökning "WFRF:(Vikman Jenny) srt2:(2010-2014)"

Sökning: WFRF:(Vikman Jenny) > (2010-2014)

  • Resultat 1-6 av 6
Sortera/gruppera träfflistan
   
NumreringReferensOmslagsbildHitta
1.
  • Ahlkvist, Linda, et al. (författare)
  • Synergism by individual macronutrients explains the marked early GLP-1 and islet hormone responses to mixed meal challenge in mice
  • 2012
  • Ingår i: Regulatory Peptides. - : Elsevier. - 0167-0115 .- 1873-1686. ; 178:1-3, s. 29-35
  • Tidskriftsartikel (refereegranskat)abstract
    • Apart from glucose, proteins and lipids also stimulate incretin and islet hormone secretion. However, the glucoregulatory effect of macronutrients in combination is poorly understood. We therefore developed an oral mixed meal model in mice to 1) explore the glucagon-like peptide-1 (GLP-1) and islet hormone responses to mixed meal versus isocaloric glucose, and 2) characterize the relative contribution of individual macronutrients to these responses. Anesthetized C57BL/6J female mice were orally gavaged with 1) a mixed meal (0.285 kcal; glucose, whey protein and peanut oil; 60/20/20% kcal) versus an isocaloric glucose load (0.285 kcal), and 2) a mixed meal (0.285 kcal) versus glucose, whey protein or peanut oil administered individually in their mixed meal caloric quantity, i.e., 0.171, 0.055 and 0.055 kcal, respectively. Plasma was analyzed for glucose, insulin and intact GLP-1 before and during oral challenges. Plasma glucose was lower after mixed meal versus after isocaloric glucose ingestion. In spite of this, the peak insulin response (P=0.02), the peak intact GLP-1 levels (P=0.006) and the estimated β-cell function (P=0.005) were higher. Furthermore, the peak insulin (P=0.004) and intact GLP-1 (P=0.006) levels were higher after mixed meal ingestion than the sum of responses to individual macronutrients. Compared to glucose alone, we conclude that there is a marked early insulin response to mixed meal ingestion, which emanates from a synergistic, rather than an additive, effect of the individual macronutrients in the mixed meal and is in part likely caused by increased levels of GLP-1.
  •  
2.
  •  
3.
  • Andersson, Sofia A, et al. (författare)
  • Glucose-dependent docking and SNARE protein-mediated exocytosis in mouse pancreatic alpha-cell
  • 2011
  • Ingår i: Pflügers Archiv. - : Springer. - 0031-6768 .- 1432-2013. ; 462:3, s. 443-454
  • Tidskriftsartikel (refereegranskat)abstract
    • The function of alpha-cells in patients with type 2 diabetes is often disturbed; glucagon secretion is increased at hyperglycaemia, yet fails to respond to hypoglycaemia. A crucial mechanism behind the fine-tuned release of glucagon relies in the exocytotic machinery including SNARE proteins. Here, we aimed to investigate the temporal role of syntaxin 1A and SNAP-25 in mouse alpha-cell exocytosis. First, we used confocal imaging to investigate glucose dependency in the localisation of SNAP-25 and syntaxin 1A. SNAP-25 was mainly distributed in the plasma membrane at 2.8 mM glucose, whereas the syntaxin 1A distribution in the plasma membrane, as compared to the cytosolic fraction, was highest at 8.3 mM glucose. Furthermore, following inclusion of an antibody against SNAP-25 or syntaxin 1A, exocytosis evoked by a train of ten depolarisations and measured as an increase in membrane capacitance was reduced by ~50%. Closer inspection revealed a reduction in the refilling of granules from the reserve pool (RP), but also showed a decreased size of the readily releasable pool (RRP) by ~45%. Disparate from the situation in pancreatic beta-cells, the voltage-dependent Ca²⁺ current was not reduced, but the Ca²⁺ sensitivity of exocytosis decreased by the antibody against syntaxin 1A. Finally, ultrastructural analysis revealed that the number of docked granules was >2-fold higher at 16.7 mM than at 1 mM glucose. We conclude that syntaxin 1A and SNAP-25 are necessary for alpha-cell exocytosis and regulate fusion of granules belonging to both the RRP and RP without affecting the Ca²⁺ current.
  •  
4.
  • Carr, Richard D, et al. (författare)
  • Secretion and Dipeptidyl Peptidase-4-Mediated Metabolism of Incretin Hormones after a Mixed Meal or Glucose Ingestion in Obese Compared to Lean, Nondiabetic Men.
  • 2010
  • Ingår i: The Journal of clinical endocrinology and metabolism. - : The Endocrine Society. - 1945-7197 .- 0021-972X. ; 95, s. 872-878
  • Tidskriftsartikel (refereegranskat)abstract
    • Context: Glucose-dependent insulinotropic polypeptide (GIP) and glucagon-like peptide-1 (GLP-1) are cleaved by dipeptidyl peptidase-4 (DPP-4); plasma activity of DPP-4 may be increased in obesity. The impact of this increase on incretin hormone secretion and metabolism is not known. Objective: The aim of the study was to assess incretin hormone secretion and degradation in lean and obese nondiabetic subjects. Design, Settings, and Participants: We studied the ingestion of a mixed meal (560 kcal) or oral glucose (2 g/kg) in healthy lean (n = 12; body mass index, 20-25 kg/m(2)) or obese (n = 13; body mass index, 30-35 kg/m(2)) males at a University Clinical Research Unit. Main Outcome Measures: We measured the area under the curve of plasma intact (i) and total (t) GIP and GLP-1 after meal ingestion and oral glucose. Results: Plasma DPP-4 activity was higher in the obese subjects (38.5 +/- 3.0 vs. 26.7 +/- 1.6 mmol/min . mul; P = 0.002). Although GIP secretion (AUCtGIP) was not reduced in obese subjects after meal ingestion or oral glucose, AUCiGIP was lower in obese subjects (8.5 +/- 0.6 vs. 12.7 +/- 0.9 nmol/liter x 300 min; P < 0.001) after meal ingestion. GLP-1 secretion (AUCtGLP-1) was reduced in obese subjects after both meal ingestion (7.3 +/- 0.9 vs. 10.0 +/- 0.6 nmol/liter x 300 min; P = 0.022) and oral glucose (6.6 +/- 0.8 vs. 9.6 +/- 1.1 nmol/liter x 180 min; P = 0.035). iGLP-1 was reduced in parallel to tGLP-1. Conclusions: 1) Release and degradation of the two incretin hormones show dissociated changes in obesity: GLP-1 but not GIP secretion is lower after meal ingestion and oral glucose, whereas GIP but not GLP-1 metabolism is increased after meal ingestion. 2) Increased plasma DPP-4 activity in obesity is not associated with a generalized augmented incretin hormone metabolism.
  •  
5.
  •  
6.
  • Omar, Bilal, et al. (författare)
  • Enhanced beta cell function and anti-inflammatory effect after chronic treatment with the dipeptidyl peptidase-4 inhibitor vildagliptin in an advanced-aged diet-induced obesity mouse model
  • 2013
  • Ingår i: Diabetologia. - : Springer. - 0012-186X .- 1432-0428. ; 56:8, s. 1752-1760
  • Tidskriftsartikel (refereegranskat)abstract
    • AIMS/HYPOTHESIS: Studies have shown that dipeptidyl peptidase-4 (DPP4) inhibitors stimulate insulin secretion and increase beta cell mass in rodents. However, in these models hyperglycaemia has been induced early on in life and the treatment periods have been short. To explore the long-term effects of DPP4 inhibition on insulin secretion and beta cell mass, we have generated a high-fat diet (HFD)-induced-obesity model in mice of advanced age (10 months old). METHODS: After 1 month of HFD alone, the mice were given the DPP4 inhibitor vildagliptin for a further 11 months. At multiple time points throughout the study, OGTTs were performed and beta cell area and long-term survival were evaluated. RESULTS: Beta cell function and glucose tolerance were significantly improved by vildagliptin with both diets. In contrast, in spite of the long treatment period, beta cell area was not significantly different between vildagliptin-treated mice and controls. Mice of advanced age chronically fed an HFD displayed clear and extensive pancreatic inflammation and peri-insulitis, mainly formed by CD3-positive T cells, which were completely prevented by vildagliptin treatment. Chronic vildagliptin treatment also improved survival rates for HFD-fed mice. CONCLUSIONS/INTERPRETATION: In a unique advanced-aged HFD-induced-obesity mouse model, insulin secretion was improved and the extensive peri-insulitis prevented by chronic DPP4 inhibition. The improved survival rates for obese mice chronically treated with vildagliptin suggest that chronic DPP4 inhibition potentially results in additional quality-adjusted life-years for individuals with type 2 diabetes, which is the primary goal of any diabetes therapy.
  •  
Skapa referenser, mejla, bekava och länka
  • Resultat 1-6 av 6

Kungliga biblioteket hanterar dina personuppgifter i enlighet med EU:s dataskyddsförordning (2018), GDPR. Läs mer om hur det funkar här.
Så här hanterar KB dina uppgifter vid användning av denna tjänst.

 
pil uppåt Stäng

Kopiera och spara länken för att återkomma till aktuell vy