SwePub
Sök i SwePub databas

  Utökad sökning

Träfflista för sökning "WFRF:(Viljanen T) srt2:(2020-2024)"

Sökning: WFRF:(Viljanen T) > (2020-2024)

  • Resultat 1-5 av 5
Sortera/gruppera träfflistan
   
NumreringReferensOmslagsbildHitta
1.
  • Nygård, K., et al. (författare)
  • ForMAX – a beamline for multiscale and multimodal structural characterization of hierarchical materials
  • 2024
  • Ingår i: Journal of Synchrotron Radiation. - : International Union of Crystallography (IUCr). - 0909-0495 .- 1600-5775. ; 31:Pt 2, s. 363-377
  • Tidskriftsartikel (refereegranskat)abstract
    • The ForMAX beamline at the MAX IV Laboratory provides multiscale and multimodal structural characterization of hierarchical materials in the nanometre to millimetre range by combining small- and wide-angle X-ray scattering with full-field microtomography. The modular design of the beamline is optimized for easy switching between different experimental modalities. The beamline has a special focus on the development of novel fibrous materials from forest resources, but it is also well suited for studies within, for example, food science and biomedical research.
  •  
2.
  • Andersson, Maria L.E., et al. (författare)
  • Autoantibodies to Disease-Related Proteins in Joints as Novel Biomarkers for the Diagnosis of Rheumatoid Arthritis
  • 2023
  • Ingår i: Arthritis & Rheumatology. - : Wiley. - 2326-5191 .- 2326-5205. ; 75:7, s. 1110-1119
  • Tidskriftsartikel (refereegranskat)abstract
    • Objective. This study was undertaken to develop and characterize a multiplex immunoassay for detection of autoantibodies against peptides derived from proteins known to play a role in development of arthritis and that are also expressed in joints.Methods. We selected peptides from the human counterpart of proteins expressed in the joints, based on mouse models that showed these to be targeted by pathogenic or regulatory antibodies in vivo. Using bead-based flow immunoassays measuring IgG antibodies, we selected triple helical or cyclic peptides, containing the epitopes, to avoid collinear reactivity. We characterized the analytical performance of the immunoassay and then validated it in 3 independent rheumatoid arthritis (RA) cohorts (n = 2,110), Swedish age- and sex-matched healthy controls, and patients with osteoarthritis (OA), patients with psoriatic arthritis (PsA), and patients with systemic lupus erythematosus (SLE).Results. Screening assays showed 5 peptide antigens that discriminated RA patients from healthy controls with 99% specificity (95% confidence interval [CI] 98-100%). In our validation studies, we reproduced the discriminatory capacity of the autoantibodies in 2 other RA cohorts, showing that the autoantibodies had high discriminatory capacity for RA versus OA, PsA, and SLE. The novel biomarkers identified 22.5% (95% CI 19-26%) of early RA patients seronegative for anti-cyclic citrullinated peptide and rheumatoid factor. The usefulness of the biomarkers in identifying seronegative RA patients was confirmed in validation studies using 2 independent cohorts of RA patients and cohorts of patients with OA, PsA, and SLE.Conclusion. A multiplex immunoassay with peptides from disease-related proteins in joints was found to be useful for detection of specific autoantibodies in RA serum. Of note, this immunoassay had high discriminatory capacity for early seronegative RA.
  •  
3.
  • Dimmock, Andrew P., et al. (författare)
  • Modeling the Geomagnetic Response to the September 2017 Space Weather Event Over Fennoscandia Using the Space Weather Modeling Framework : Studying the Impacts of Spatial Resolution
  • 2021
  • Ingår i: Space Weather. - : American Geophysical Union (AGU). - 1542-7390. ; 19:5
  • Tidskriftsartikel (refereegranskat)abstract
    • We must be able to predict and mitigate against geomagnetically induced current (GIC) effects to minimize socio-economic impacts. This study employs the space weather modeling framework (SWMF) to model the geomagnetic response over Fennoscandia to the September 7-8, 2017 event. Of key importance to this study is the effects of spatial resolution in terms of regional forecasts and improved GIC modeling results. Therefore, we ran the model at comparatively low, medium, and high spatial resolutions. The virtual magnetometers from each model run are compared with observations from the IMAGE magnetometer network across various latitudes and over regional-scales. The virtual magnetometer data from the SWMF are coupled with a local ground conductivity model which is used to calculate the geoelectric field and estimate GICs in a Finnish natural gas pipeline. This investigation has lead to several important results in which higher resolution yielded: (1) more realistic amplitudes and timings of GICs, (2) higher amplitude geomagnetic disturbances across latitudes, and (3) increased regional variations in terms of differences between stations. Despite this, substorms remain a significant challenge to surface magnetic field prediction from global magnetohydrodynamic modeling. For example, in the presence of multiple large substorms, the associated large-amplitude depressions were not captured, which caused the largest model-data deviations. The results from this work are of key importance to both modelers and space weather operators. Particularly when the goal is to obtain improved regional forecasts of geomagnetic disturbances and/or more realistic estimates of the geoelectric field.
  •  
4.
  • Dimmock, Andrew P., et al. (författare)
  • On the Regional Variability ofdB/dtand Its Significance to GIC
  • 2020
  • Ingår i: Space Weather. - : AMER GEOPHYSICAL UNION. - 1542-7390. ; 18:8
  • Tidskriftsartikel (refereegranskat)abstract
    • Faraday's law of induction is responsible for setting up a geoelectric field due to the variations in the geomagnetic field caused by ionospheric currents. This drives geomagnetically induced currents (GICs) which flow in large ground-based technological infrastructure such as high-voltage power lines. The geoelectric field is often a localized phenomenon exhibiting significant variations over spatial scales of only hundreds of kilometers. This is due to the complex spatiotemporal behavior of electrical currents flowing in the ionosphere and/or large gradients in the ground conductivity due to highly structured local geological properties. Over some regions, and during large storms, both of these effects become significant. In this study, we quantify the regional variability ofdB/dtusing closely placed IMAGE stations in northern Fennoscandia. The dependency between regional variability, solar wind conditions, and geomagnetic indices are also investigated. Finally, we assess the significance of spatial geomagnetic variations to modeling GICs across a transmission line. Key results from this study are as follows: (1) Regional geomagnetic disturbances are important in modeling GIC during strong storms; (2)dB/dtcan vary by several times up to a factor of three compared to the spatial average; (3)dB/dtand its regional variation is coupled to the energy deposited into the magnetosphere; and (4) regional variability can be more accurately captured and predicted from a local index as opposed to a global one. These results demonstrate the need for denser magnetometer networks at high latitudes where transmission lines extending hundreds of kilometers are present.
  •  
5.
  •  
Skapa referenser, mejla, bekava och länka
  • Resultat 1-5 av 5

Kungliga biblioteket hanterar dina personuppgifter i enlighet med EU:s dataskyddsförordning (2018), GDPR. Läs mer om hur det funkar här.
Så här hanterar KB dina uppgifter vid användning av denna tjänst.

 
pil uppåt Stäng

Kopiera och spara länken för att återkomma till aktuell vy