SwePub
Sök i SwePub databas

  Utökad sökning

Träfflista för sökning "WFRF:(WESTLUND P) srt2:(2000-2004)"

Sökning: WFRF:(WESTLUND P) > (2000-2004)

  • Resultat 1-7 av 7
Sortera/gruppera träfflistan
   
NumreringReferensOmslagsbildHitta
1.
  • Hakansson, P., et al. (författare)
  • A direct simulation of EPR slow-motion spectra of spin labelled phospholipids in liquid crystalline bilayers based on a molecular dynamics simulation of the lipid dynamics
  • 2001
  • Ingår i: Physical Chemistry, Chemical Physics - PCCP. - : Royal Society of Chemistry (RSC). - 1463-9076 .- 1463-9084. ; 3:23, s. 5311-5319
  • Tidskriftsartikel (refereegranskat)abstract
    • EPR line shapes can be calculated from the stochastic Liouville equation assuming a stochastic model for the reorientation of the spin probe. Here we use instead and for the first time a detailed molecular dynamics (MD) simulation to generate the stochastic input to the Langevin form of the Liouville equation. A 0.1 mus MD simulation at T = 50 degreesC of a small lipid bilayer formed by 64 dipalmitoylphosphatidylcholine (DPPC) molecules at the water content of 23 water molecules per lipid was used. In addition, a 10 ns simulation of a 16 times larger system consisting of 32 DPPC molecules with a nitroxide spin moiety attached at the sixth position of the sn2 chain and 992 ordinary DPPC molecules, was used to investigate the extent of the perturbation caused by the spin probe. Order parameters, reorientational dynamics and the EPR FID curve were calculated for spin probe molecules and ordinary DPPC molecules. The timescale of the electron spin relaxation for a spin-moiety attached at the sixth carbon position of a DPPC lipid molecule is 11.9 x 10(7) rad s(-1) and for an unperturbed DPPC molecule it is 3.5 x 10(7) rad s(-1).
  •  
2.
  •  
3.
  •  
4.
  • Håkansson, P, et al. (författare)
  • Itô diffusions on hypersurfaces with application to the Schwarz-P surface and nuclear magnetic resonance theory
  • 2002
  • Ingår i: The Journal of Chemical Physics. ; 117:19, s. 8634-43
  • Tidskriftsartikel (refereegranskat)abstract
    • This work presents a new Brownian dynamics simulation method of translational diffusion on curved surfaces. This new method introduce any implicit defined surface into the stochastic differential equation describing Brownian motion on that surface. The surface curvature will thus enter the force term (A) in the stochastic differential equation dXt = A(Xt)dt + B(Xt)dWt describing an Itô process. We apply the method calculating time correlation functions relevant in nuclear magnetic resonance (NMR) relaxation and translational diffusion studies of cubic phases of lyotropic systems. In particularly we study some bicontinuous cubic liquid crystalline phases which can be described as triply periodic minimal surfaces. The curvature dependent spin relaxation of the Schwarz-P minimal surface is calculated. A comparison of relaxation is made with the more complex topology of the Neovius surface which is another minimal surface in the same space group, and with parallel displacement of the minimal surface which thus results in a nonminimal surface. The curvature dependent relaxation effects are determined by calculating the translational diffusion modulated time-correlation function which determine the relaxation rates of a quadrupole nuclei residing in the water–lipid interface. The results demonstrates that spin relaxation data can provide quantitative information about micro-structure of biocontinuous cubic phases and that it is sensitive to the topology of the surface and to parallel displacement of the model surface. Consequently, spin relaxation may be used as a complement to x-ray diffraction in order to discriminate between different microstructures. It is concluded that fast and accurate computer simulations experiments is needed to be able to interpret NMR relaxation experiments on curved surfaces. © 2002 American Institute of Physics.
  •  
5.
  •  
6.
  •  
7.
  • Åman, Ken, et al. (författare)
  • Structure and dynamics of interfacial water in an L-alpha phase lipid bilayer from molecular dynamics simulations
  • 2003
  • Ingår i: Biophysical Journal. - 0006-3495 .- 1542-0086. ; 84, s. 102-15
  • Tidskriftsartikel (refereegranskat)abstract
    • Based on molecular dynamics simulations, an analysis of structure and dynamics is performed on interfacial water at a liquid crystalline dipalmitoylphosphatidycholine/water system. Water properties relevant for understanding NMR relaxation are emphasized. The first and second rank orientational order parameters of the water O-H bonds were calculated, where the second rank order parameter is in agreement with experimental determined quadrupolar splittings. Also, two different interfacial water regions (bound water regions) are revealed with respect to different signs of the second rank order parameter. The water reorientation correlation function reveals a mixture of fast and slow decaying parts. The fast (ps) part of the correlation function is due to local anisotropic water reorientation whereas the much slower part is due to more complicated processes including lateral diffusion along the interface and chemical exchange between free and bound water molecules. The 100-ns-long molecular dynamics simulation at constant pressure (1 atm) and at a temperature of 50degreesC of 64 lipid molecules and 64 x 23 water molecules lack a slow water reorientation correlation component in the ns time scale. The (H2O)-H-2 powder spectrum of the dipalmitoylphosphatidycholine/water system is narrow and consequently, the NMR relaxation time T-2 is too short compared to experimental results.
  •  
Skapa referenser, mejla, bekava och länka
  • Resultat 1-7 av 7

Kungliga biblioteket hanterar dina personuppgifter i enlighet med EU:s dataskyddsförordning (2018), GDPR. Läs mer om hur det funkar här.
Så här hanterar KB dina uppgifter vid användning av denna tjänst.

 
pil uppåt Stäng

Kopiera och spara länken för att återkomma till aktuell vy