SwePub
Sök i SwePub databas

  Utökad sökning

Träfflista för sökning "WFRF:(Wang Yueqiang) srt2:(2015-2019)"

Sökning: WFRF:(Wang Yueqiang) > (2015-2019)

  • Resultat 1-30 av 30
Sortera/gruppera träfflistan
   
NumreringReferensOmslagsbildHitta
1.
  •  
2.
  •  
3.
  • Bombarda, F., et al. (författare)
  • Runaway electron beam control
  • 2019
  • Ingår i: Plasma Physics and Controlled Fusion. - : IOP Publishing. - 1361-6587 .- 0741-3335. ; 61:1
  • Tidskriftsartikel (refereegranskat)
  •  
4.
  •  
5.
  •  
6.
  •  
7.
  •  
8.
  •  
9.
  •  
10.
  •  
11.
  •  
12.
  •  
13.
  •  
14.
  •  
15.
  •  
16.
  •  
17.
  •  
18.
  •  
19.
  • 2018
  • Ingår i: Nuclear Fusion. - : IOP Publishing. - 1741-4326 .- 0029-5515. ; 58:1
  • Forskningsöversikt (refereegranskat)
  •  
20.
  • Guo, S. C., et al. (författare)
  • Cancellation of drift kinetic effects between thermal and energetic particles on the resistive wall mode stabilization
  • 2016
  • Ingår i: Nuclear Fusion. - : IOP Publishing. - 1741-4326 .- 0029-5515. ; 56:7, s. Artno 076006-
  • Tidskriftsartikel (refereegranskat)abstract
    • Drift kinetic stabilization of the resistive wall mode (RWM) is computationally investigated using MHD-kinetic hybrid code MARS-K following the non-perturbative approach (Liu et al 2008 Phys. Plasmas 15 112503), for both reversed field pinch (RFP) and tokamak plasmas. Toroidal precessional drift resonance effects from trapped energetic ions (EIs) and various kinetic resonances between the mode and the guiding center drift motions of thermal particles are included into the self-consistent toroidal computations. The results show cancellation effects of the drift kinetic damping on the RWM between the thermal particles and EIs contributions, in both RFP and tokamak plasmas, even though each species alone can provide damping and stabilize RWM instability by respective kinetic resonances. The degree of cancellation generally depends on the EIs equilibrium distribution, the particle birth energy, as well as the toroidal flow speed of the plasma.
  •  
21.
  • He, Y., et al. (författare)
  • Combined effects of trapped energetic ions and resistive layer damping on the stability of the resistive wall mode
  • 2016
  • Ingår i: Physics of Plasmas. - : AIP Publishing. - 1089-7674 .- 1070-664X. ; 23:1
  • Tidskriftsartikel (refereegranskat)abstract
    • A dispersion relation is derived for the stability of the resistive wall mode (RWM), which includes both the resistive layer damping physics and the toroidal precession drift resonance damping from energetic ions in tokamak plasmas. The dispersion relation is numerically solved for a model plasma, for the purpose of systematic investigation of the RWM stability in multi-dimensional plasma parameter space including the plasma resistivity, the radial location of the resistive wall, as well as the toroidal flow velocity. It is found that the toroidal favorable average curvature in the resistive layer contributes a significant stabilization of the RWM. This stabilization is further enhanced by adding the drift kinetic contribution from energetic ions. Furthermore, two traditionally assumed inner layer models are considered and compared in the dispersion relation, resulting in different predictions for the stability of the RWM.
  •  
22.
  • Li, L., et al. (författare)
  • Modelling plasma response to RMP fields in ASDEX Upgrade with varying edge safety factor and triangularity
  • 2016
  • Ingår i: Nuclear Fusion. - : IOP Publishing. - 1741-4326 .- 0029-5515. ; 56:12, s. Art. no. 126007-
  • Tidskriftsartikel (refereegranskat)abstract
    • Toroidal computations are performed using the MARS-F code (Liu et al 2000 Phys. Plasmas 7 3681), in order to understand correlations between the plasma response and the observed mitigation of the edge localized modes (ELM) using resonant magnetic perturbation fields in ASDEX Upgrade. In particular, systematic numerical scans of the edge safety factor reveal that the amplitude of the resonant poloidal harmonic of the response radial magnetic field near the plasma edge, as well as the plasma radial displacement near the X-point, can serve as good indicators for predicting the optimal toroidal phasing between the upper and lower rows of coils in ASDEX Upgrade. The optimal coil phasing scales roughly linearly with the edge safety factor , for various choices of the toroidal mode number n = 1-4 of the coil configuration. The optimal coil phasing is also predicted to vary with the upper triangularity of the plasma shape in ASDEX Upgrade. Furthermore, multiple resonance effects of the plasma response, with continuously varying , are computationally observed and investigated.
  •  
23.
  • Li, L., et al. (författare)
  • Screening of external magnetic perturbation fields due to sheared plasma flow
  • 2016
  • Ingår i: Nuclear Fusion. - : IOP Publishing. - 1741-4326 .- 0029-5515. ; 56:9
  • Tidskriftsartikel (refereegranskat)abstract
    • Within the single fluid resistive magnetohydrodynamic model, systematic toroidal modelling efforts are devoted to investigate the plasma response induced screening of the applied external 3D magnetic field perturbations in the presence of sheared toroidal flow. One particular issue of interest is addressed, when the local flow speed approaches zero at the perturbation rational surface inside the plasma. Subtle screening physics, associated with the favourable averaged toroidal curvature effect (the GGJ effect (Glasser et al 1975 Phys. Fluids 7 875)), is found to play an essential role during slow flow near the rational surface by enhancing the screening at reduced flow. A strong cancellation effect between different terms of Ohm's law is discovered, leading to different screening physics in the GGJ regime, as compared to that of conventional screening of the typical resistive-inertial regime occurring at faster flow. These modelling results may be applicable to interpret certain mode locking experiments, as well as type-I edge localized mode suppression experiments, with resonant magnetic field perturbations being applied to tokamak plasmas at low input toroidal torque.
  •  
24.
  • Li, L., et al. (författare)
  • Toroidal modeling of plasma response to RMP fields in ITER
  • 2017
  • Ingår i: Plasma Physics and Controlled Fusion. - : IOP Publishing. - 1361-6587 .- 0741-3335. ; 59:4
  • Tidskriftsartikel (refereegranskat)abstract
    • A systematic numerical study is carried out, computing the resistive plasma response to the resonant magnetic perturbation (RMP) fields for ITER plasmas, utilizing the toroidal code MARS-F (Liu et al 2000 Phys. Plasmas 7 3681). A number of factors are taken into account, including the variation of the plasma scenarios (from 15 MA Q = 10 inductive scenario to the 9 MA Q = 5 steady state scenario), the variation of the toroidal spectrum of the applied fields (n = 1, 2, 3, 4, with n being the toroidal mode number), the amplitude and phase variation of the currents in three rows of the RMP coils as designed for ITER, and finally a special case of mixed toroidal spectrum between the n = 3 and n = 4 RMP fields. Two-dimensional parameter scans, for the edge safety factor and the coil phasing between the upper and lower rows of coils, yield 'optimal' curves that maximize a set of figures of merit, that are defined in this work to measure the plasma response. Other two-dimensional scans of the relative coil current phasing among three rows of coils, at fixed coil currents amplitude, reveal a single optimum for each coil configuration with a given n number, for the 15 MA ITER inductive plasma. On the other hand, scanning of the coil current amplitude, at fixed coil phasing, shows either synergy or cancellation effect, for the field contributions between the off-middle rows and the middle row of the RMP coils. Finally, the mixed toroidal spectrum, by combining the n = 3 and the n = 4 RMP field, results in a substantial local reduction of the amplitude of the plasma surface displacement.
  •  
25.
  • Liu, Yueqiang, 1971, et al. (författare)
  • Comparative investigation of ELM control based on toroidal modelling of plasma response to RMP fields
  • 2017
  • Ingår i: Physics of Plasmas. - : AIP Publishing. - 1089-7674 .- 1070-664X. ; 24:5
  • Tidskriftsartikel (refereegranskat)abstract
    • Extensive modelling efforts of the plasma response to the resonant magnetic perturbation fields, utilized for controlling the edge localized mode (ELM), help to identify the edge-peeling response as a key factor, which correlates to the observed ELM mitigation in several tokamak devices, including MAST, ASDEX Upgrade, EAST, and HL-2A. The recently observed edge safety factor window for ELM mitigation in HL-2A experiments is explained in terms of the edge-peeling response. The computed plasma response, based on toroidal single fluid resistive plasma model with different assumption of toroidal flows, is found generally larger in ELM suppressed cases as compared to that of the ELM mitigated cases, in ASDEX Upgrade and DIII-D. The plasma shaping, in particular, the plasma triangularity, contributes to the enhanced plasma response. But the shaping does not appear to be the sole factor-other factors such as the (higher) pedestal pressure and/or current can also lead to increased edge-peeling response.
  •  
26.
  • Liu, Yueqiang, 1971, et al. (författare)
  • Modelling toroidal rotation damping in ITER due to external 3D fields
  • 2015
  • Ingår i: Nuclear Fusion. - : IOP Publishing. - 1741-4326 .- 0029-5515. ; 55:6
  • Tidskriftsartikel (refereegranskat)abstract
    • The linear and quasi-linear plasma response to the n = 3 and n = 4 (n is the toroidal mode number) resonant magnetic perturbation (RMP) fields, produced by the in-vessel edge localized mode control coils, is numerically studied for an ITER 15MA H-mode baseline scenario. Both single fluid and fluid-kinetic hybrid models are used. The inclusion of drift kinetic effects does not strongly alter the plasma response compared to the fluid approximation for this ITER plasma. The full toroidal drift kinetic model is also used to compute the neoclassical toroidal viscous (NTV) torque, yielding results close to that of an analytic model based on geometric simplifications. The computed NTV torque from low-n RMP fields is generally smaller than the resonant electromagnetic torque for this ITER plasma. The linear response computations show a weak core kink response, contrary to a strong kink response often computed for plasmas from present day tokamak devices. Initial value quasi-linear simulations, including various torque models, show a localized damping of the plasma toroidal flow near the edge, as a result of the applied RMP fields. This localized rotation damping can be weak or strong depending on whether a weakly unstable edge localized peeling mode is present. No qualitative difference is found between the n = 3 and n = 4 RMP field configurations, in both the linear and non-linear response results.
  •  
27.
  • Meyer, H., et al. (författare)
  • Overview of progress in European medium sized tokamaks towards an integrated plasma-edge/wall solution
  • 2017
  • Ingår i: Nuclear Fusion. - : Institute of Physics Publishing (IOPP). - 0029-5515 .- 1741-4326. ; 57:10
  • Tidskriftsartikel (refereegranskat)abstract
    • Integrating the plasma core performance with an edge and scrape-off layer (SOL) that leads to tolerable heat and particle loads on the wall is a major challenge. The new European medium size tokamak task force (EU-MST) coordinates research on ASDEX Upgrade (AUG), MAST and TCV. This multi-machine approach within EU-MST, covering a wide parameter range, is instrumental to progress in the field, as ITER and DEMO core/pedestal and SOL parameters are not achievable simultaneously in present day devices. A two prong approach is adopted. On the one hand, scenarios with tolerable transient heat and particle loads, including active edge localised mode (ELM) control are developed. On the other hand, divertor solutions including advanced magnetic configurations are studied. Considerable progress has been made on both approaches, in particular in the fields of: ELM control with resonant magnetic perturbations (RMP), small ELM regimes, detachment onset and control, as well as filamentary scrape-off-layer transport. For example full ELM suppression has now been achieved on AUG at low collisionality with n = 2 RMP maintaining good confinement H-H(98,H-y2) approximate to 0.95. Advances have been made with respect to detachment onset and control. Studies in advanced divertor configurations (Snowflake, Super-X and X-point target divertor) shed new light on SOL physics. Cross field filamentary transport has been characterised in a wide parameter regime on AUG, MAST and TCV progressing the theoretical and experimental understanding crucial for predicting first wall loads in ITER and DEMO. Conditions in the SOL also play a crucial role for ELM stability and access to small ELM regimes.
  •  
28.
  • Tang, Yunyu, et al. (författare)
  • Porphyrins Containing a Triphenylamine Donor and up to Eight Alkoxy Chains for Dye-Sensitized Solar Cells : A High Efficiency of 10.9%
  • 2015
  • Ingår i: ACS Applied Materials and Interfaces. - : American Chemical Society (ACS). - 1944-8244 .- 1944-8252. ; 7:50, s. 27976-27985
  • Tidskriftsartikel (refereegranskat)abstract
    • Porphyrins are promising DSSC sensitizers due to their structural similarity to chlorophylls as well as their tunable strong absorption. Herein, a novel D-pi-A porphyrin dye XW14 containing a strongly electron-donating triphenyl-amine moiety as the electron donor was designed and synthesized: To avoid undesirably decreased V-oc caused by dye aggregation effect, two methoxy or hexyloxy chains were introduced to the para positions of the triphenylamine moiety to afford XW15 and XW16, respectively. To further extend the absorption to a longer wavelength, a benzothiadiazole unit was introduced as an auxiliary acceptor to furnish XW17. Compared with XW14, the introduction of additional methoxy or hexyloxy groups in XW15 and XW16 red-shift the onset wavelengths from 760 to 780 and 790 nm, respectively. More impressively, XW17 has a more extended pi-conjugation framework, and thus, it exhibits a much broader IPCE spectrum with an extremely red-shifted onset wavelength Of 830 mu, resulting in the highest J(sc) (18.79 mA cm(-2)). On the other hand, the hexyloxy chains are favorable for suppressing the dye aggregation effect, and thus XW16 shows the highest V-oc 734 mV. As a result, XW16 and XW17 demonstrate photovoltaic efficiencies of 9,1 and 9.5%, respectively, higher than those of XW14 (8.6%) and XW15 (8.7%), and obviously higher than that of 7.94% for our previously reported dye, XW4. On the basis of optimized porphyrin dye XW17, we used a nonporphyrin dye with a high V-oc and strong absorption around 500 inn (WS-5) as the cosensitizer to improve the V-oc from 700 to 748 mV, with synergistical J(sc) enhancement from 18.79 to 20.30 mA cm(-2). Thus, the efficiency was dramatically enhanced to 10.9%, which is among the highest efficiencies obtained for the DSSCs based on traditional iodine electrolyte. In addition, the DSSCs based on XW17 + WS-5 exhibit good photostability, which is beneficial for practical applications.
  •  
29.
  • Tang, Yunyu, et al. (författare)
  • Solar cells sensitized with porphyrin dyes with a carbazole donor : The effects of an auxiliary benzothiadiazole acceptor and bulky substituents on the donor
  • 2019
  • Ingår i: Dyes and pigments. - : ELSEVIER SCI LTD. - 0143-7208 .- 1873-3743. ; 171
  • Tidskriftsartikel (refereegranskat)abstract
    • Three porphyrin sensitizers XW54-XW56 containing a carbazole donor have been designed and synthesized by introducing a benzothiadiazole (BTD) unit as the auxiliary electron acceptor to extend the absorption spectra and/or bulky dihexyloxyphenyl groups into the carbazole unit to suppress dye aggregation and improve the photovoltage (V-OC). The BTD unit incorporated in XW54 obviously broadens and red-shifts the absorption threshold to ca. 700 nm, as compared with that of 650 nm observed for XW1. Thus, XW54 exhibits a much broader monochromatic photon-to-electron conversion efficiency (IPCE) spectrum with an extremely red-shifted onset wavelength of 780 nm, resulting in a photocurrent density (J(SC)) of 11.60 mA cm(-2), higher than that of XW1. Unfortunately, the V-OC value was decreased owing to the more severe dye aggregation caused by the large conjugation framework induced by the presence of the BTD unit. As a result, XW54 shows an efficiency of 6.26%, slightly higher than that of 6.11% obtained for XW1. On the other hand, with the bulky dihexyloxyphenyl donor groups introduced to XW55, a highest V-OC, of 860 mV was achieved, which can be ascribed to the efficient prevention of charge recombination and suppression of dye aggregation. Thus, XW55-based cells exhibit an improved efficiency of 6.60%. On the basis of XW54 and XW55, two bulky dihexyloxyphenyl groups and a BTD unit were simultaneously introduced to XW56, affording a highest efficiency of 7.03%, with the J(SC )and V-OC, values of 12.5 mA cm(-2) and 785 mV, respectively. These results compose a novel approach for developing efficient dye-sensitized solar cells (DSSCs) by simultaneously introducing bulky dihexyloxyphenyl groups and a benzothiadiazole unit, which may synergistically broaden the absorption spectra and suppress the dye aggregation, resulting in improved photocurrent and photovoltage.
  •  
30.
  • Yang, Xu, et al. (författare)
  • Modelling of plasma response to 3D external magnetic field perturbations in EAST
  • 2016
  • Ingår i: Plasma Physics and Controlled Fusion. - : IOP Publishing. - 1361-6587 .- 0741-3335. ; 58:11, s. 114006-
  • Tidskriftsartikel (refereegranskat)abstract
    • Sustained mitigation and/or suppression of type-I edge localized modes (ELMs) has been achieved in EAST high-confinement plasmas, utilizing the resonant magnetic perturbation (RMP) fields produced by two rows of magnetic coils located just inside the vacuum vessel. Systematic toroidal modelling of the plasma response to these RMP fields with various coil configurations (with dominant toroidal mode number n = 1, 2, 3, 4) in EAST is, for the first time, carried out by using the MARS-F code (Liu et al 2000 Phys. Plasmas 7 3681), with results reported here. In particular, the plasma response is computed with varying coil phasing (the toroidal phase difference of the coil currents) between the upper and lower rows of coils, from 0 to 360°. Four figures of merit, constructed based on the MARS-F computations, are used to determine the optimal coil phasing. The modelled results, taking into account the plasma response, agree well with the experimental observations in terms of the coil phasing for both the mitigated and the suppressed ELM cases in EAST experiments. This study provides a crucial confirmation of the role of the plasma edge peeling response in ELM control, complementing similar studies carried out for other tokamak devices.
  •  
Skapa referenser, mejla, bekava och länka
  • Resultat 1-30 av 30

Kungliga biblioteket hanterar dina personuppgifter i enlighet med EU:s dataskyddsförordning (2018), GDPR. Läs mer om hur det funkar här.
Så här hanterar KB dina uppgifter vid användning av denna tjänst.

 
pil uppåt Stäng

Kopiera och spara länken för att återkomma till aktuell vy