SwePub
Sök i SwePub databas

  Utökad sökning

Träfflista för sökning "WFRF:(Wang Ziwei) srt2:(2020)"

Sökning: WFRF:(Wang Ziwei) > (2020)

  • Resultat 1-4 av 4
Sortera/gruppera träfflistan
   
NumreringReferensOmslagsbildHitta
1.
  • Beal, Jacob, et al. (författare)
  • Robust estimation of bacterial cell count from optical density
  • 2020
  • Ingår i: Communications Biology. - : Springer Science and Business Media LLC. - 2399-3642. ; 3:1
  • Tidskriftsartikel (refereegranskat)abstract
    • Optical density (OD) is widely used to estimate the density of cells in liquid culture, but cannot be compared between instruments without a standardized calibration protocol and is challenging to relate to actual cell count. We address this with an interlaboratory study comparing three simple, low-cost, and highly accessible OD calibration protocols across 244 laboratories, applied to eight strains of constitutive GFP-expressing E. coli. Based on our results, we recommend calibrating OD to estimated cell count using serial dilution of silica microspheres, which produces highly precise calibration (95.5% of residuals <1.2-fold), is easily assessed for quality control, also assesses instrument effective linear range, and can be combined with fluorescence calibration to obtain units of Molecules of Equivalent Fluorescein (MEFL) per cell, allowing direct comparison and data fusion with flow cytometry measurements: in our study, fluorescence per cell measurements showed only a 1.07-fold mean difference between plate reader and flow cytometry data.
  •  
2.
  • Franke, James A., et al. (författare)
  • The GGCMI Phase 2 emulators : Global gridded crop model responses to changes in CO2, temperature, water, and nitrogen (version 1.0)
  • 2020
  • Ingår i: Geoscientific Model Development. - : Copernicus GmbH. - 1991-959X .- 1991-9603. ; 13:9, s. 3995-4018
  • Tidskriftsartikel (refereegranskat)abstract
    • Statistical emulation allows combining advantageous features of statistical and process-based crop models for understanding the effects of future climate changes on crop yields. We describe here the development of emulators for nine process-based crop models and five crops using output from the Global Gridded Model Intercomparison Project (GGCMI) Phase 2. The GGCMI Phase 2 experiment is designed with the explicit goal of producing a structured training dataset for emulator development that samples across four dimensions relevant to crop yields: Atmospheric carbon dioxide (CO2) concentrations, temperature, water supply, and nitrogen inputs (CTWN). Simulations are run under two different adaptation assumptions: That growing seasons shorten in warmer climates, and that cultivar choice allows growing seasons to remain fixed. The dataset allows emulating the climatological-mean yield response of all models with a simple polynomial in mean growing-season values. Climatological-mean yields are a central metric in climate change impact analysis; we show here that they can be captured without relying on interannual variations. In general, emulation errors are negligible relative to differences across crop models or even across climate model scenarios; errors become significant only in some marginal lands where crops are not currently grown. We demonstrate that the resulting GGCMI emulators can reproduce yields under realistic future climate simulations, even though the GGCMI Phase 2 dataset is constructed with uniform CTWN offsets, suggesting that the effects of changes in temperature and precipitation distributions are small relative to those of changing means. The resulting emulators therefore capture relevant crop model responses in a lightweight, computationally tractable form, providing a tool that can facilitate model comparison, diagnosis of interacting factors affecting yields, and integrated assessment of climate impacts.
  •  
3.
  • Yang, Xiaoyong, et al. (författare)
  • Investigating the solution and diffusion properties of hydrogen in alpha-Uranium by first-principles calculations
  • 2020
  • Ingår i: Progress in nuclear energy (New series). - : PERGAMON-ELSEVIER SCIENCE LTD. - 0149-1970 .- 1878-4224. ; 122
  • Tidskriftsartikel (refereegranskat)abstract
    • The stability, solution and diffusion properties of an interstitial hydrogen atom in uranium metal have been firstly investigated by first-principles calculations. In energy, the octahedral site is more favorable for hydrogen to occupy than tetrahedra site with neglectable anisotropic perturbation. Besides, the effects of temperature on solution energy are quantified, which demonstrate the solution energy decreases fast with temperature. The calculated density of states and electronic charge re-distribution are analyzed. It is found the conductivity of metal uranium remains well after hydrogen occupied the interstitial position with lower concentration. The minimum migration pathways of interstitial hydrogen in uranium lattice are characterized by the climbing image nudged elastic band (CINEB) method. The obtained energy barriers are 0.239 eV, 0.298 eV and 0.313 eV with respect to O <-> T, O <-> O and T <-> T pathways with feeble structural deterioration. We believe our results for hydrogen diffusion in such a complex f -electron system not only provide en evidence for uranium corrosion but also supports the future experiments on measuring the hydriding rate and their interpretations.
  •  
4.
  • Yang, Xiaoyong, et al. (författare)
  • Unveiling the energetic and structural properties of Pu doped zircon through electrochemical equilibrium diagram from DFT plus U calculations
  • 2020
  • Ingår i: Journal of Nuclear Materials. - : Elsevier BV. - 0022-3115 .- 1873-4820. ; 539
  • Tidskriftsartikel (refereegranskat)abstract
    • Zircon (ZrSiO4) mineral is a sustainable and promising material to store of radioactive waste that has received extensive attention by material, geochemical and environmental scientists. Although the incorporation of actinide elements in zircon lattices has been experimentally studied, bare fundamental work are carried out to systemically assess the structural and chemical stabilities of Pu doped zircon. The primary aim to unveil the Pu immobilization mechanism and assess the stability of PuxZr1-xSiO4 is carried out by calculating the formation energies, electron and hole affinities, and electronic levels of Pu doped zircon based on density functional theory. Our results reveal under mu = mu(O-poor) condition Pu-Si(4+), Pu-Zr(1+) and Pu-Zr(0) are respectively energetically favorable to form with increasing the electronic chemical potential. Besides, Pu-Zr(4+) is energetically favorable in an n-type environment under all these three conditions (i.e., mu = mu(O-poor), mu = mu(Pu/Zr), mu = mu(Pu/Si)). In addition, Pu doping will induce local structural distortion. Intriguingly however, self-repairing the symmetry of [ZrO8] polyhedra is first observed via the structural distortion in Pu-Zr(4+) configuration, which in turn could enhance the structural stability of PuxZr1-xSiO4. Ab initio molecular dynamic simulations demonstrate the configurations with negative formation energies are thermal stable at 500 K. The charge density difference and charge transfer are investigated to describe the chemical bonding nature. It is demonstrated Pu(5f)-O(2p) hybridization is more profound for interstitial Pu. Moreover, the bonding character of surrounding Zr atoms along [010] direction is almost identical to the pristine one, while it is distinctly changed towards [100] and [001] directions, showing remarkable anisotropy of PuxZr1-xSiO4. Oppositely, the ionicity in Pu-O bond is mainly featured when Zr or Si sites are substituted by Pu atoms which becomes stronger with increasing the hole doping process. (C) 2020 Elsevier B.V. All rights reserved.
  •  
Skapa referenser, mejla, bekava och länka
  • Resultat 1-4 av 4

Kungliga biblioteket hanterar dina personuppgifter i enlighet med EU:s dataskyddsförordning (2018), GDPR. Läs mer om hur det funkar här.
Så här hanterar KB dina uppgifter vid användning av denna tjänst.

 
pil uppåt Stäng

Kopiera och spara länken för att återkomma till aktuell vy