SwePub
Sök i SwePub databas

  Utökad sökning

Träfflista för sökning "WFRF:(Webster Matthew T.) srt2:(2015-2019)"

Sökning: WFRF:(Webster Matthew T.) > (2015-2019)

  • Resultat 1-11 av 11
Sortera/gruppera träfflistan
   
NumreringReferensOmslagsbildHitta
1.
  • 2019
  • Tidskriftsartikel (refereegranskat)
  •  
2.
  • Arndt, D. S., et al. (författare)
  • STATE OF THE CLIMATE IN 2017
  • 2018
  • Ingår i: Bulletin of The American Meteorological Society - (BAMS). - : American Meteorological Society. - 0003-0007 .- 1520-0477. ; 99:8, s. S1-S310
  • Forskningsöversikt (refereegranskat)
  •  
3.
  • Christmas, Matthew J, et al. (författare)
  • Chromosomal inversions associated with environmental adaptation in honeybees
  • 2019
  • Ingår i: Molecular Ecology. - : WILEY. - 0962-1083 .- 1365-294X. ; 28:6, s. 1358-1374
  • Tidskriftsartikel (refereegranskat)abstract
    • Chromosomal inversions can facilitate local adaptation in the presence of gene flow by suppressing recombination between well-adapted native haplotypes and poorly adapted migrant haplotypes. East African mountain populations of the honeybee Apis mellifera are highly divergent from neighbouring lowland populations at two extended regions in the genome, despite high similarity in the rest of the genome, suggesting that these genomic regions harbour inversions governing local adaptation. Here, we utilize a new highly contiguous assembly of the honeybee genome to characterize these regions. Using whole-genome sequencing data from 55 highland and lowland bees, we find that the highland haplotypes at both regions are present at high frequencies in three independent highland populations but extremely rare elsewhere. The boundaries of both divergent regions are characterized by regions of high homology with each other positioned in opposite orientations and contain highly repetitive, long inverted repeats with homology to transposable elements. These regions are likely to represent inversion breakpoints that participate in nonallelic homologous recombination. Using long-read data, we confirm that the lowland samples are contiguous across breakpoint regions. We do not find evidence for disruption of functional sequence by these breakpoints, which suggests that the inversions are likely maintained due to their allelic content conferring local adaptation in highland environments. Finally, we identify a third divergent genomic region, which contains highly divergent segregating haplotypes that also may contain inversion variants under selection. The results add to a growing body of evidence indicating the importance of chromosomal inversions in local adaptation.
  •  
4.
  • Jones, Julia C., et al. (författare)
  • Extreme Differences in Recombination Rate between the Genomes of a Solitary and a Social Bee
  • 2019
  • Ingår i: Molecular biology and evolution. - : Oxford University Press (OUP). - 0737-4038 .- 1537-1719. ; 36:10, s. 2277-2291
  • Tidskriftsartikel (refereegranskat)abstract
    • Social insect genomes exhibit the highest rates of crossing over observed in plants and animals. The evolutionary causes of these extreme rates are unknown. Insight can be gained by comparing recombination rate variation across the genomes of related social and solitary insects. Here, we compare the genomic recombination landscape of the highly social honey bee, Apis mellifera, with the solitary alfalfa leafcutter bee, Megachile rotundata, by analyzing patterns of linkage disequilibrium in population-scale genome sequencing data. We infer that average recombination rates are extremely elevated in A. mellifera compared with M. rotundata. However, our results indicate that similar factors control the distribution of crossovers in the genomes of both species. Recombination rate is significantly reduced in coding regions in both species, with genes inferred to be germline methylated having particularly low rates. Genes with worker-biased patterns of expression in A. mellifera and their orthologs in M. rotundata have higher than average recombination rates in both species, suggesting that selection for higher diversity in genes involved in worker caste functions in social taxa is not the explanation for these elevated rates. Furthermore, we find no evidence that recombination has modulated the efficacy of selection among genes during bee evolution, which does not support the hypothesis that high recombination rates facilitated positive selection for new functions in social insects. Our results indicate that the evolution of sociality in insects likely entailed selection on modifiers that increased recombination rates genome wide, but that the genomic recombination landscape is determined by the same factors.
  •  
5.
  • Almén, Markus Sällman, et al. (författare)
  • Adaptive radiation of Darwin's finches revisited using whole genome sequencing
  • 2016
  • Ingår i: Bioessays. - : Wiley. - 0265-9247 .- 1521-1878. ; 38:1, s. 14-20
  • Tidskriftsartikel (refereegranskat)abstract
    • We recently used genome sequencing to study the evolutionary history of the Darwin's finches. A prominent feature of our data was that different polymorphic sites in the genome tended to indicate different genetic relationships among these closely related species. Such patterns are expected in recently diverged genomes as a result of incomplete lineage sorting. However, we uncovered conclusive evidence that these patterns have also been influenced by interspecies hybridisation, a process that has likely played an important role in the radiation of Darwin's finches. A major discovery was that segregation of two haplotypes at the ALX1 locus underlies variation in beak shape among the Darwin's finches, and that differences between the two haplotypes in a 240 kb region in blunt and pointed beaked birds involve both coding and regulatory changes. As we review herein, the evolution of such adaptive haplotypes comprising multiple causal changes appears to be an important mechanism contributing to the evolution of biodiversity.
  •  
6.
  • Berglund, Jonas, et al. (författare)
  • Germ line Methylation Patterns Determine the Distribution of Recombination Events in the Dog Genome
  • 2015
  • Ingår i: Genome Biology and Evolution. - : Oxford University Press (OUP). - 1759-6653. ; 7:2, s. 522-530
  • Tidskriftsartikel (refereegranskat)abstract
    • The positive-regulatory domain containing nine gene, PROMO, which strongly associates with the location of recombination events in several vertebrates, is inferred to be inactive in the dog genome. Here, we address several questions regarding the control of recombination and its influence on genome evolution in dogs. First, we address whether the association between CpG islands (CGIs) and recombination hotspots is generated by lack of methylation, GC-biased gene conversion (gBGC), or both. Using a genome-wide dog single nucleotide polymorphism data set and comparisons of the dog genome with related species, we show that recombination-associated CGIs have low CpG mutation rates, and that CpG mutation rate is negatively correlated with recombination rate genome wide, indicating that nonmethylation attracts the recombination machinery. We next use a neighbor-dependent model of nucleotide substitution to disentangle the effects of CpG mutability and gBGC and analyze the effects that loss of PROMO has on these rates. We infer that methylation patterns have been stable during canid genome evolution, but that dog CGIs have experienced a drastic increase in substitution rate due to gBGC, consistent with increased levels of recombination in these regions. We also show that gBGC is likely to have generated many new CGIs in the dog genome, but these mostly occur away from genes, whereas the number of C GIs in gene promoter regions has not increased greatly in recent evolutionary history. Recombination has a major impact on the distribution of CGIs that are detected in the dog genome due to the interaction between methylation and gBGC. The results indicate that germline methylation patterns are the main determinant of recombination rates in the absence of PRDM9.
  •  
7.
  • Lamichhaney, Sangeet, 1984-, et al. (författare)
  • A beak size locus in Darwin’s finches facilitated character displacement during a drought
  • 2016
  • Ingår i: Science. - : American Association for the Advancement of Science (AAAS). - 0036-8075 .- 1095-9203. ; 352:6284, s. 470-474
  • Tidskriftsartikel (refereegranskat)abstract
    • Ecological character displacement is a process of morphological divergence that reducescompetition for limited resources. We used genomic analysis to investigate the geneticbasis of a documented character displacement event in Darwin’s finches on Daphne Majorin the Galápagos Islands: The medium ground finch diverged from its competitor, the largeground finch, during a severe drought. We discovered a genomic region containing theHMGA2gene that varies systematically among Darwin’s finch species with different beaksizes. Two haplotypes that diverged early in the radiation were involved in the characterdisplacement event: Genotypes associated with large beak size were at a strong selectivedisadvantage in medium ground finches (selection coefficients= 0.59). Thus, a majorlocus has apparently facilitated a rapid ecological diversification in the adaptive radiationof Darwin’s finches.
  •  
8.
  • Lamichhaney, Sangeet, et al. (författare)
  • Evolution of Darwin's finches and their beaks revealed by genome sequencing
  • 2015
  • Ingår i: Nature. - : Springer Science and Business Media LLC. - 0028-0836 .- 1476-4687. ; 518:7539
  • Tidskriftsartikel (refereegranskat)abstract
    • Darwin's finches, inhabiting the Galapagos archipelago and Cocos Island, constitute an iconic model for studies of speciation and adaptive evolution. Here we report the results of whole-genome re-sequencing of 120 individuals representing all of the Darwin's finch species and two close relatives' Phylogenetic analysis reveals important discrepancies with the phenotype-based taxonomy. We find extensive evidence for interspecific gene flow throughout the radiation. Hybridization has given rise to species of mixed ancestry. A 240 kilobase haplotype encompassing the ALX1 gene that encodes a transcription factor affecting craniofacial. development is strongly associated with beak shape diversity across Darwin's finch species as well as within the medium ground finch (Geospiza fortis) a species that has undergone rapid evolution of beak shape in response to environmental changes. The ALX1 haplotype has contributed to diversification of beak shapes among the Darwin's finches and thereby, to an expanded utilization of food resources.
  •  
9.
  • Wallberg, Andreas, et al. (författare)
  • Extreme Recombination Frequencies Shape Genome Variation and Evolution in the Honeybee, Apis mellifera
  • 2015
  • Ingår i: PLOS Genetics. - : Public Library of Science (PLoS). - 1553-7390 .- 1553-7404. ; 11:4
  • Tidskriftsartikel (refereegranskat)abstract
    • Meiotic recombination is a fundamental cellular process, with important consequences for evolution and genome integrity. However, we know little about how recombination rates vary across the genomes of most species and the molecular and evolutionary determinants of this variation. The honeybee, Apis mellifera, has extremely high rates of meiotic recombination, although the evolutionary causes and consequences of this are unclear. Here we use patterns of linkage disequilibrium in whole genome resequencing data from 30 diploid honeybees to construct a fine-scale map of rates of crossing over in the genome. We find that, in contrast to vertebrate genomes, the recombination landscape is not strongly punctate. Crossover rates strongly correlate with levels of genetic variation, but not divergence, which indicates a pervasive impact of selection on the genome. Germ-line methylated genes have reduced crossover rate, which could indicate a role of methylation in suppressing recombination. Controlling for the effects of methylation, we do not infer a strong association between gene expression patterns and recombination. The site frequency spectrum is strongly skewed from neutral expectations in honeybees: rare variants are dominated by AT-biased mutations, whereas GC-biased mutations are found at higher frequencies, indicative of a major influence of GC-biased gene conversion (gBGC), which we infer to generate an allele fixation bias 5 - 50 times the genomic average estimated in humans. We uncover further evidence that this repair bias specifically affects transitions and favours fixation of CpG sites. Recombination, via gBGC, therefore appears to have profound consequences on genome evolution in honeybees and interferes with the process of natural selection. These findings have important implications for our understanding of the forces driving molecular evolution.
  •  
10.
  • Wallberg, Andreas, et al. (författare)
  • Identification of Multiple Loci Associated with Social Parasitism in Honeybees
  • 2016
  • Ingår i: PLOS Genetics. - : Public Library of Science (PLoS). - 1553-7390 .- 1553-7404. ; 12:6
  • Tidskriftsartikel (refereegranskat)abstract
    • In colonies of the honeybee Apis mellifera, the queen is usually the only reproductive female, which produces new females (queens and workers) by laying fertilized eggs. However, in one subspecies of A. mellifera, known as the Cape bee (A. m. capensis), worker bees reproduce asexually by thelytoky, an abnormal form of meiosis where two daughter nucleii fuse to form single diploid eggs, which develop into females without being fertilized. The Cape bee also exhibits a suite of phenotypes that facilitate social parasitism whereby workers lay such eggs in foreign colonies so their offspring can exploit their resources. The genetic basis of this switch to social parasitism in the Cape bee is unknown. To address this, we compared genome variation in a sample of Cape bees with other African populations. We find genetic divergence between these populations to be very low on average but identify several regions of the genome with extreme differentiation. The regions are strongly enriched for signals of selection in Cape bees, indicating that increased levels of positive selection have produced the unique set of derived phenotypic traits in this subspecies. Genetic variation within these regions allows unambiguous genetic identification of Cape bees and likely underlies the genetic basis of social parasitism. The candidate loci include genes involved in ecdysteroid signaling and juvenile hormone and dopamine biosynthesis, which may regulate worker ovary activation and others whose products localize at the centrosome and are implicated in chromosomal segregation during meiosis. Functional analysis of these loci will yield insights into the processes of reproduction and chemical signaling in both parasitic and non-parasitic populations and advance understanding of the process of normal and atypical meiosis.
  •  
11.
  • Webster, Matthew T., et al. (författare)
  • Linked genetic variants on chromosome 10 control ear morphology and body mass among dog breeds
  • 2015
  • Ingår i: BMC Genomics. - : Springer Science and Business Media LLC. - 1471-2164. ; 16
  • Tidskriftsartikel (refereegranskat)abstract
    • Background: The domestic dog is a rich resource for mapping the genetic components of phenotypic variation due to its unique population history involving strong artificial selection. Genome-wide association studies have revealed a number of chromosomal regions where genetic variation associates with morphological characters that typify dog breeds. A region on chromosome 10 is among those with the highest levels of genetic differentiation between dog breeds and is associated with body mass and ear morphology, a common motif of animal domestication. We characterised variation in this region to uncover haplotype structure and identify candidate functional variants. Results: We first identified SNPs that strongly associate with body mass and ear type by comparing sequence variation in a 3 Mb region between 19 breeds with a variety of phenotypes. We next genotyped a subset of 123 candidate SNPs in 288 samples from 46 breeds to identify the variants most highly associated with phenotype and infer haplotype structure. A cluster of SNPs that associate strongly with the drop ear phenotype is located within a narrow interval downstream of the gene MSRB3, which is involved in human hearing. These SNPs are in strong genetic linkage with another set of variants that correlate with body mass within the gene HMGA2, which affects human height. In addition we find evidence that this region has been under selection during dog domestication, and identify a cluster of SNPs within MSRB3 that are highly differentiated between dogs and wolves. Conclusions: We characterise genetically linked variants that potentially influence ear type and body mass in dog breeds, both key traits that have been modified by selective breeding that may also be important for domestication. The finding that variants on long haplotypes have effects on more than one trait suggests that genetic linkage can be an important determinant of the phenotypic response to selection in domestic animals.
  •  
Skapa referenser, mejla, bekava och länka
  • Resultat 1-11 av 11
Typ av publikation
tidskriftsartikel (10)
forskningsöversikt (1)
Typ av innehåll
refereegranskat (11)
Författare/redaktör
Farrell, S. (1)
Scanlon, T. (1)
Martin, A. (1)
Wang, M. (1)
Kelly, Daniel (1)
Ackerman, Steven A. (1)
visa fler...
Allan, Rob (1)
Alves, Lincoln M. (1)
Amador, Jorge A. (1)
Andreassen, L. M. (1)
Arndt, Derek S. (1)
Azorin-Molina, César (1)
Bardin, M. U. (1)
Barichivich, Jonatha ... (1)
Baringer, Molly O. (1)
Barreira, Sandra (1)
Baxter, Stephen (1)
Becker, Andreas (1)
Bedka, Kristopher M. (1)
Bell, Gerald D. (1)
Belmont, M. (1)
Benedetti, Angela (1)
Berrisford, Paul (1)
Berry, David I. (1)
Bhatt, U. S. (1)
Bissolli, Peter (1)
Blake, Eric S. (1)
Bosilovich, Michael ... (1)
Boucher, Olivier (1)
Box, J. E. (1)
Boyer, Tim (1)
Braathen, Geir O. (1)
Bromwich, David H. (1)
Brown, R. (1)
Bulygina, Olga N. (1)
Burgess, D. (1)
Calderón, Blanca (1)
Camargo, Suzana J. (1)
Campbell, Jayaka D. (1)
Cappelen, J. (1)
Carter, Brendan R. (1)
Chambers, Don P. (1)
Christiansen, Hanne ... (1)
Christy, John R. (1)
Chung, E. S. (1)
Clem, Kyle R. (1)
Coldewey-Egbers, Mel ... (1)
Colwell, Steve (1)
Cooper, Owen R. (1)
Copland, L. (1)
visa färre...
Lärosäte
Uppsala universitet (11)
Sveriges Lantbruksuniversitet (4)
Umeå universitet (2)
Göteborgs universitet (1)
Högskolan i Halmstad (1)
Stockholms universitet (1)
visa fler...
Lunds universitet (1)
Chalmers tekniska högskola (1)
Karolinska Institutet (1)
visa färre...
Språk
Engelska (11)
Forskningsämne (UKÄ/SCB)
Naturvetenskap (8)
Medicin och hälsovetenskap (4)
Lantbruksvetenskap (4)

År

Kungliga biblioteket hanterar dina personuppgifter i enlighet med EU:s dataskyddsförordning (2018), GDPR. Läs mer om hur det funkar här.
Så här hanterar KB dina uppgifter vid användning av denna tjänst.

 
pil uppåt Stäng

Kopiera och spara länken för att återkomma till aktuell vy