SwePub
Sök i SwePub databas

  Utökad sökning

Träfflista för sökning "WFRF:(Wedel T) srt2:(2020-2022)"

Sökning: WFRF:(Wedel T) > (2020-2022)

  • Resultat 1-3 av 3
Sortera/gruppera träfflistan
   
NumreringReferensOmslagsbildHitta
1.
  • Zheng, TH, et al. (författare)
  • Genome-wide analysis of 944 133 individuals provides insights into the etiology of haemorrhoidal disease
  • 2021
  • Ingår i: Gut. - : BMJ. - 1468-3288 .- 0017-5749. ; 70:8, s. 1538-1549
  • Tidskriftsartikel (refereegranskat)abstract
    • Haemorrhoidal disease (HEM) affects a large and silently suffering fraction of the population but its aetiology, including suspected genetic predisposition, is poorly understood. We report the first genome-wide association study (GWAS) meta-analysis to identify genetic risk factors for HEM to date.DesignWe conducted a GWAS meta-analysis of 218 920 patients with HEM and 725 213 controls of European ancestry. Using GWAS summary statistics, we performed multiple genetic correlation analyses between HEM and other traits as well as calculated HEM polygenic risk scores (PRS) and evaluated their translational potential in independent datasets. Using functional annotation of GWAS results, we identified HEM candidate genes, which differential expression and coexpression in HEM tissues were evaluated employing RNA-seq analyses. The localisation of expressed proteins at selected loci was investigated by immunohistochemistry.ResultsWe demonstrate modest heritability and genetic correlation of HEM with several other diseases from the GI, neuroaffective and cardiovascular domains. HEM PRS validated in 180 435 individuals from independent datasets allowed the identification of those at risk and correlated with younger age of onset and recurrent surgery. We identified 102 independent HEM risk loci harbouring genes whose expression is enriched in blood vessels and GI tissues, and in pathways associated with smooth muscles, epithelial and endothelial development and morphogenesis. Network transcriptomic analyses highlighted HEM gene coexpression modules that are relevant to the development and integrity of the musculoskeletal and epidermal systems, and the organisation of the extracellular matrix.ConclusionHEM has a genetic component that predisposes to smooth muscle, epithelial and connective tissue dysfunction.
  •  
2.
  • Ahmadi, Shilan Seyed, et al. (författare)
  • Risk factors for nephropathy in persons with type 1 diabetes: a population-based study
  • 2022
  • Ingår i: Acta Diabetologica. - : Springer Science and Business Media LLC. - 0940-5429 .- 1432-5233. ; 59, s. 761-772
  • Tidskriftsartikel (refereegranskat)abstract
    • Aims Albuminuria is strongly associated with risk of renal dysfunction, cardiovascular disease and mortality. However, clinical guidelines diverge, and evidence is sparse on what risk factor levels regarding blood pressure, blood lipids and BMI are needed to prevent albuminuria in adolescents and young adults with type 1 diabetes. Methods A total of 9347 children and adults with type 1 diabetes [mean age 15.3 years and mean diabetes duration 1.4 years at start of follow-up] from The Swedish National Diabetes Registry were followed from first registration until end of 2017. Levels for risk factors for a risk increase in nephropathy were evaluated, and the gradient of risk per 1 SD (standard deviation) was estimated to compare the impact of each risk factor. Results During the follow-up period, 8610 (92.1%) remained normoalbuminuric, 737 (7.9%) individuals developed micro- or macroalbuminuria at any time period of whom 132 (17.9% of 737) individuals developed macroalbuminuria. Blood pressure >= 140/80 mmHg was associated with increased risk of albuminuria (p <= 0.0001), as were triglycerides >= 1.0 mmol/L (p = 0.039), total cholesterol >= 5.0 mmol/L (p = 0.0003), HDL < 1.0 mmol/L (p = 0.013), LDL 3.5- < 4.0 mmol/L (p = 0.020), and BMI >= 30 kg/m(2) (p = 0.033). HbA1c was the strongest risk factor for any albuminuria estimated by the measure gradient of risk per 1 SD, followed by diastolic blood pressure, triglycerides, systolic blood pressure, cholesterol and LDL. In patients with HbA1c > 65 mmol/mol (> 8.1%), blood pressure > 140/70 mmHg was associated with increased risk of albuminuria. Conclusions Preventing renal complications in adolescents and young adults with type 1 diabetes need avoidance at relatively high levels of blood pressure, blood lipids and BMI, whereas very tight control is not associated with further risk reduction. For patients with long-term poor glycaemic control, stricter blood pressure control is advocated.
  •  
3.
  • Cavinato, Maria, et al. (författare)
  • Targeting cellular senescence based on interorganelle communication, multilevel proteostasis, and metabolic control
  • 2021
  • Ingår i: The FEBS Journal. - : Wiley. - 1742-464X .- 1742-4658. ; 228:12, s. 3834-3854
  • Forskningsöversikt (refereegranskat)abstract
    • Cellular senescence, a stable cell division arrest caused by severe damage and stress, is a hallmark of aging in vertebrates including humans. With progressing age, senescent cells accumulate in a variety of mammalian tissues, where they contribute to tissue aging, identifying cellular senescence as a major target to delay or prevent aging. There is an increasing demand for the discovery of new classes of small molecules that would either avoid or postpone cellular senescence by selectively eliminating senescent cells from the body (i.e., 'senolytics') or inactivating/switching damage-inducing properties of senescent cells (i.e., 'senostatics/senomorphics'), such as the senescence-associated secretory phenotype. Whereas compounds with senolytic or senostatic activity have already been described, their efficacy and specificity has not been fully established for clinical use yet. Here, we review mechanisms of senescence that are related to mitochondria and their interorganelle communication, and the involvement of proteostasis networks and metabolic control in the senescent phenotype. These cellular functions are associated with cellular senescence in in vitro and in vivo models but have not been fully exploited for the search of new compounds to counteract senescence yet. Therefore, we explore possibilities to target these mechanisms as new opportunities to selectively eliminate and/or disable senescent cells with the aim of tissue rejuvenation. We assume that this research will provide new compounds from the chemical space which act as mimetics of caloric restriction, modulators of calcium signaling and mitochondrial physiology, or as proteostasis optimizers, bearing the potential to counteract cellular senescence, thereby allowing healthy aging.
  •  
Skapa referenser, mejla, bekava och länka
  • Resultat 1-3 av 3

Kungliga biblioteket hanterar dina personuppgifter i enlighet med EU:s dataskyddsförordning (2018), GDPR. Läs mer om hur det funkar här.
Så här hanterar KB dina uppgifter vid användning av denna tjänst.

 
pil uppåt Stäng

Kopiera och spara länken för att återkomma till aktuell vy