SwePub
Sök i SwePub databas

  Extended search

Träfflista för sökning "WFRF:(Weiland M) srt2:(2020-2024)"

Search: WFRF:(Weiland M) > (2020-2024)

  • Result 1-20 of 20
Sort/group result
   
EnumerationReferenceCoverFind
1.
  • Murari, A., et al. (author)
  • A control oriented strategy of disruption prediction to avoid the configuration collapse of tokamak reactors
  • 2024
  • In: Nature Communications. - 2041-1723 .- 2041-1723. ; 15:1
  • Journal article (peer-reviewed)abstract
    • The objective of thermonuclear fusion consists of producing electricity from the coalescence of light nuclei in high temperature plasmas. The most promising route to fusion envisages the confinement of such plasmas with magnetic fields, whose most studied configuration is the tokamak. Disruptions are catastrophic collapses affecting all tokamak devices and one of the main potential showstoppers on the route to a commercial reactor. In this work we report how, deploying innovative analysis methods on thousands of JET experiments covering the isotopic compositions from hydrogen to full tritium and including the major D-T campaign, the nature of the various forms of collapse is investigated in all phases of the discharges. An original approach to proximity detection has been developed, which allows determining both the probability of and the time interval remaining before an incoming disruption, with adaptive, from scratch, real time compatible techniques. The results indicate that physics based prediction and control tools can be developed, to deploy realistic strategies of disruption avoidance and prevention, meeting the requirements of the next generation of devices.
  •  
2.
  •  
3.
  •  
4.
  •  
5.
  •  
6.
  • Fenstermacher, M.E., et al. (author)
  • DIII-D research advancing the physics basis for optimizing the tokamak approach to fusion energy
  • 2022
  • In: Nuclear Fusion. - : IOP Publishing. - 0029-5515 .- 1741-4326. ; 62:4
  • Journal article (peer-reviewed)abstract
    • DIII-D physics research addresses critical challenges for the operation of ITER and the next generation of fusion energy devices. This is done through a focus on innovations to provide solutions for high performance long pulse operation, coupled with fundamental plasma physics understanding and model validation, to drive scenario development by integrating high performance core and boundary plasmas. Substantial increases in off-axis current drive efficiency from an innovative top launch system for EC power, and in pressure broadening for Alfven eigenmode control from a co-/counter-I p steerable off-axis neutral beam, all improve the prospects for optimization of future long pulse/steady state high performance tokamak operation. Fundamental studies into the modes that drive the evolution of the pedestal pressure profile and electron vs ion heat flux validate predictive models of pedestal recovery after ELMs. Understanding the physics mechanisms of ELM control and density pumpout by 3D magnetic perturbation fields leads to confident predictions for ITER and future devices. Validated modeling of high-Z shattered pellet injection for disruption mitigation, runaway electron dissipation, and techniques for disruption prediction and avoidance including machine learning, give confidence in handling disruptivity for future devices. For the non-nuclear phase of ITER, two actuators are identified to lower the L-H threshold power in hydrogen plasmas. With this physics understanding and suite of capabilities, a high poloidal beta optimized-core scenario with an internal transport barrier that projects nearly to Q = 10 in ITER at ∼8 MA was coupled to a detached divertor, and a near super H-mode optimized-pedestal scenario with co-I p beam injection was coupled to a radiative divertor. The hybrid core scenario was achieved directly, without the need for anomalous current diffusion, using off-axis current drive actuators. Also, a controller to assess proximity to stability limits and regulate β N in the ITER baseline scenario, based on plasma response to probing 3D fields, was demonstrated. Finally, innovative tokamak operation using a negative triangularity shape showed many attractive features for future pilot plant operation.
  •  
7.
  • Stroth, U., et al. (author)
  • Progress from ASDEX Upgrade experiments in preparing the physics basis of ITER operation and DEMO scenario development
  • 2022
  • In: Nuclear Fusion. - : IOP Publishing. - 1741-4326 .- 0029-5515. ; 62:4
  • Journal article (peer-reviewed)abstract
    • An overview of recent results obtained at the tokamak ASDEX Upgrade (AUG) is given. A work flow for predictive profile modelling of AUG discharges was established which is able to reproduce experimental H-mode plasma profiles based on engineering parameters only. In the plasma center, theoretical predictions on plasma current redistribution by a dynamo effect were confirmed experimentally. For core transport, the stabilizing effect of fast ion distributions on turbulent transport is shown to be important to explain the core isotope effect and improves the description of hollow low-Z impurity profiles. The L-H power threshold of hydrogen plasmas is not affected by small helium admixtures and it increases continuously from the deuterium to the hydrogen level when the hydrogen concentration is raised from 0 to 100%. One focus of recent campaigns was the search for a fusion relevant integrated plasma scenario without large edge localised modes (ELMs). Results from six different ELM-free confinement regimes are compared with respect to reactor relevance: ELM suppression by magnetic perturbation coils could be attributed to toroidally asymmetric turbulent fluctuations in the vicinity of the separatrix. Stable improved confinement mode plasma phases with a detached inner divertor were obtained using a feedback control of the plasma β. The enhanced D α H-mode regime was extended to higher heating power by feedback controlled radiative cooling with argon. The quasi-coherent exhaust regime was developed into an integrated scenario at high heating power and energy confinement, with a detached divertor and without large ELMs. Small ELMs close to the separatrix lead to peeling-ballooning stability and quasi continuous power exhaust. Helium beam density fluctuation measurements confirm that transport close to the separatrix is important to achieve the different ELM-free regimes. Based on separatrix plasma parameters and interchange-drift-Alfvén turbulence, an analytic model was derived that reproduces the experimentally found important operational boundaries of the density limit and between L- and H-mode confinement. Feedback control for the X-point radiator (XPR) position was established as an important element for divertor detachment control. Stable and detached ELM-free phases with H-mode confinement quality were obtained when the XPR was moved 10 cm above the X-point. Investigations of the plasma in the future flexible snow-flake divertor of AUG by means of first SOLPS-ITER simulations with drifts activated predict beneficial detachment properties and the activation of an additional strike point by the drifts.
  •  
8.
  • Kazakov, Ye O., et al. (author)
  • Physics and applications of three-ion ICRF scenarios for fusion research
  • 2021
  • In: Physics of Plasmas. - : American Institute of Physics (AIP). - 1070-664X .- 1089-7674. ; 28:2
  • Research review (peer-reviewed)abstract
    • This paper summarizes the physical principles behind the novel three-ion scenarios using radio frequency waves in the ion cyclotron range of frequencies (ICRF). We discuss how to transform mode conversion electron heating into a new flexible ICRF technique for ion cyclotron heating and fast-ion generation in multi-ion species plasmas. The theoretical section provides practical recipes for selecting the plasma composition to realize three-ion ICRF scenarios, including two equivalent possibilities for the choice of resonant absorbers that have been identified. The theoretical findings have been convincingly confirmed by the proof-of-principle experiments in mixed H–D plasmas on the Alcator C-Mod and JET tokamaks, using thermal 3He and fast D ions from neutral beam injection as resonant absorbers. Since 2018, significant progress has been made on the ASDEX Upgrade and JET tokamaks in H–4He and H–D plasmas, guided by the ITER needs. Furthermore, the scenario was also successfully applied in JET D–3He plasmas as a technique to generate fusion-born alpha particles and study effects of fast ions on plasma confinement under ITER-relevant plasma heating conditions. Tuned for the central deposition of ICRF power in a small region in the plasma core of large devices such as JET, three-ion ICRF scenarios are efficient in generating large populations of passing fast ions and modifying the q-profile. Recent experimental and modeling developments have expanded the use of three-ion scenarios from dedicated ICRF studies to a flexible tool with a broad range of different applications in fusion research.
  •  
9.
  • Bilato, A., et al. (author)
  • Impact of ICRF fast-ions on core turbulence and MHD activity in ASDEX upgrade
  • 2023
  • In: 24th Topical Conference On Radio-Frequency Power In Plasmas. - : AIP Publishing.
  • Conference paper (peer-reviewed)abstract
    • Experiments in various tokamaks and their analysis identify the fast ions (FI) generated by NBI and/or ICRF heating as one of the main causes of the observed improvement in core confinement: fast ions can reduce core microturbulence (mainly Ion-Temperature-Gradient (ITG) driven modes) either electrostatically or electromagnetically, or they can resonate with fishbones and high-frequency Alfvén modes, which in turn contribute in stabilizing ITG. In this perspective, we discuss recent experiments done on ASDEX Upgrade (AUG) where ICRF is the main actuator for FI generation for energies above 100 keV. Additionally, ICRF-FIs can substantially impact the MHD activity and its consequent effects on fast ion losses (FILs) and ion-cyclotron emission (ICE). We present dedicated AUG experiments with NBI-D further accelerated by ICRF.
  •  
10.
  • Ochoukov, R., et al. (author)
  • Analysis of high frequency Alfven eigenmodes observed in ASDEX Upgrade plasmas in the presence of RF-accelerated NBI ions
  • 2023
  • In: Nuclear Fusion. - : IOP Publishing. - 0029-5515 .- 1741-4326. ; 63:4, s. 046001-
  • Journal article (peer-reviewed)abstract
    • High frequency Alfven eigenmodes in the ion cyclotron frequency range are actively researched on the ASDEX Upgrade tokamak (AUG). The general properties of this particular mode type are: (a) the mode is beam-driven and, if excited, can persist for the entire duration of the beam-on time window; (b) the mode is sub-cyclotron with the frequency omega similar to 0.5 omega (ci), where omega(ci) corresponds to the on-axis cyclotron frequency of the beam ions;
  •  
11.
  • Björn, M., et al. (author)
  • Kod som teknisk lösning : En studie om grundskoleelevers uppfattningar av ändamålsenlighet i deras spontana programspråk
  • 2021
  • In: NorDiNa. - : University of Oslo Library. - 1504-4556 .- 1894-1257. ; 17:1, s. 113-129
  • Journal article (peer-reviewed)abstract
    • This study examines primary school students’ perception of functionality in their spontaneous programming language for controlling a simple robot. Classroom activities were designed in order to create opportunities for the students (year 1 and year 4) to discuss and develop together with their teachers a shared programming language for controlling a simple robot. The students spontaneously used (a) natural language, (b) images or (c) symbols when they created their programming language. The findings show that the students primarily perceived a code’s functionality as a question of readability, rather than how well it fit the purpose of controlling the robot. Possible consequences of the findings for teaching in technology education are discussed.
  •  
12.
  • Weiland, F., et al. (author)
  • Ovarian Blood Sampling Identifies Junction Plakoglobin as a Novel Biomarker of Early Ovarian Cancer
  • 2020
  • In: Frontiers in Oncology. - : Frontiers Media SA. - 2234-943X. ; 10
  • Journal article (peer-reviewed)abstract
    • Ovarian cancer is the most lethal gynecologic malignancy. Early detection would improve survival, but an effective diagnostic test does not exist. Novel biomarkers for early ovarian cancer diagnosis are therefore warranted. We performed intraoperative blood sampling from ovarian veins of stage I epithelial ovarian carcinomas and analyzed the serum proteome. Junction plakoglobin (JUP) was found to be elevated in venous blood from ovaries with malignancies when compared to those with benign disease. Peripheral plasma JUP levels were validated by ELISA in a multicenter international patient cohort. JUP was significantly increased in FIGO serous stage IA+B (1.97-fold increase; p < 0.001; n = 20), serous stage I (2.09-fold increase; p < 0.0001; n = 40), serous stage II (1.81-fold increase, p < 0.001, n = 23) and serous stage III ovarian carcinomas (1.98-fold increase; p < 0.0001; n = 34) vs. normal controls (n = 109). JUP plasma levels were not increased in early stage breast cancer (p = 0.122; n = 12). In serous ovarian cancer patients, JUP had a sensitivity of 85% in stage IA+B and 60% in stage IA-C, with specificities of 76 and 94%, respectively. A logistic regression model of JUP and Cancer Antigen 125 (CA125) revealed a sensitivity of 70% for stage IA+B and 75% for stage IA-C serous carcinomas at 100% specificity. Our novel ovarian blood sampling – proteomics approach identified JUP as a promising new biomarker for epithelial ovarian cancer, which in combination with CA125 might fulfill the test criteria for ovarian cancer screening. © Copyright © 2020 Weiland, Lokman, Klingler-Hoffmann, Jobling, Stephens, Sundfeldt, Hoffmann and Oehler.
  •  
13.
  • Kaberg, M, et al. (author)
  • Hepatitis C elimination - Macro-elimination
  • 2020
  • In: Liver international : official journal of the International Association for the Study of the Liver. - : Wiley. - 1478-3231. ; 4040 Suppl 1, s. 61-66
  • Journal article (peer-reviewed)
  •  
14.
  •  
15.
  • Lestander, T. A., et al. (author)
  • Gasification of pure and mixed feedstock components : Effect on syngas composition and gasification efficiency
  • 2022
  • In: Journal of Cleaner Production. - : Elsevier Ltd. - 0959-6526 .- 1879-1786. ; 369
  • Journal article (peer-reviewed)abstract
    • The aim of this work was to investigate whether the use of individual tree components (i.e., stem wood, bark, branches, and needles of spruces) as feedstocks during oxygen blow gasification is more efficient than using mixtures of these components. Experiments were performed at three oxygen levels in an 18-kW oxygen blown fixed bed gasifier with both single and mixed component feedstocks. The composition of the resulting syngas and the cold gas efficiency based on CO and H2 (CGEfuel) were used as response variables to evaluate the influence of different feedstocks on gasification performance. Based on the experimental results and data on the composition of ∼26000 trees drawn from a national Swedish spruce database, multivariate models were developed to simulate gasifier performance under different operating conditions and with different feedstock compositions. The experimental results revealed that the optimal CGEfuel with respect to the oxygen supply differed markedly between the different spruce tree components. Additionally, the models showed that co-gasification of mixed components yielded a lower CGEfuel than separate gasification of pure components. Optimizing the oxygen supply for the average tree composition reduced the GCEfuel by 1.3–6.2% when compared to optimal gasification of single component feedstocks. Therefore, if single-component feedstocks are available, it may be preferable to gasify them separately because doing so provides a higher gasification efficiency than co-gasification of mixed components. © 2022 The Authors
  •  
16.
  • Rafiq, T., et al. (author)
  • Microtearing instabilities and electron thermal transport in low and high collisionality NSTX discharges
  • 2021
  • In: Physics of Plasmas. - : AIP Publishing. - 1089-7674 .- 1070-664X. ; 28:2
  • Journal article (peer-reviewed)abstract
    • Microtearing mode (MTM) real frequency, growth rate, magnetic fluctuation amplitude, and resulting electron thermal transport are studied in systematic NSTX scans of relevant plasma parameters. The dependency of the MTM real frequency and growth rate on plasma parameters, suitable for low and high collision NSTX discharges, is obtained by using the reduced MTM transport model [T. Rafiq et al., Phys. Plasmas 23, 062507 (2016)]. The plasma parameter dependencies are compared and found to be consistent with the results obtained from MTM using the gyrokinetic GYRO code. The scaling trend of collision frequency and plasma beta is found to be consistent with the global energy confinement trend observed in the NSTX experiment. The strength of the magnetic fluctuation is found to be consistent with the gyrokinetic estimate. In earlier studies, it was found that the version of the multi-mode (MM) anomalous transport model, which did not contain the effect of MTMs, provided an appropriate description of the electron temperature profiles in standard tokamak discharges and not in spherical tokamaks. When the MM model, which involves transport associated with MTMs, is incorporated in the TRANSP code and is used in the study of electron thermal transport in NSTX discharges, it is observed that the agreement with the experimental electron temperature profile is substantially improved.
  •  
17.
  • Rafiq, T, et al. (author)
  • Predictive modeling of NSTX discharges with the updated multi-mode anomalous transport module
  • 2024
  • In: Nuclear Fusion. - 0029-5515 .- 1741-4326. ; 64:7
  • Journal article (peer-reviewed)abstract
    • The objective of this study is twofold: firstly, to demonstrate the consistency between the anomalous transport results produced by updated Multi-Mode Model (MMM) version 9.0.4 and those obtained through gyrokinetic simulations; and secondly, to showcase MMM’s ability to predict electron and ion temperature profiles in low aspect ratio, high beta NSTX discharges. MMM encompasses a range of transport mechanisms driven by electron and ion temperature gradients, trapped electrons, kinetic ballooning, peeling, microtearing, and drift resistive inertial ballooning modes. These modes within MMM are being verified through corresponding gyrokinetic results. The modes that potentially contribute to ion thermal transport are stable in MMM, aligning with both experimental data and findings from linear CGYRO simulations. The isotope effects on these modes are also studied and higher mass is found to be stabilizing, consistent with the experimental trend. The electron thermal power across the flux surface is computed within MMM and compared to experimental measurements and nonlinear CGYRO simulation results. Specifically, the electron temperature gradient modes (ETGM) within MMM account for 2.0 MW of thermal power, consistent with experimental findings. It is noteworthy that the ETGM model requires approximately 5.0 ms of computation time on a standard desktop, while nonlinear CGYRO simulations necessitate 8.0 h on 8 K cores. MMM proves to be highly computationally efficient, a crucial attribute for various applications, including real-time control, tokamak scenario optimization, and uncertainty quantification of experimental data.
  •  
18.
  • Smith, K. W., et al. (author)
  • Design and Operation of the ATLAS Transient Science Server
  • 2020
  • In: Publications of the Astronomical Society of the Pacific. - : IOP Publishing. - 0004-6280 .- 1538-3873. ; 132:1014
  • Journal article (peer-reviewed)abstract
    • The Asteroid Terrestrial impact Last Alert System (ATLAS) system consists of two 0.5 m Schmidt telescopes with cameras covering 29 square degrees at plate scale of 1.86 arcsec per pixel. Working in tandem, the telescopes routinely survey the whole sky visible from Hawaii (above delta > -50 degrees) every two nights, exposing four times per night, typically reaching o < 19 magnitude per exposure when the moon is illuminated and c < 19.5 magnitude per exposure in dark skies. Construction is underway of two further units to be sited in Chile and South Africa which will result in an all-sky daily cadence from 2021. Initially designed for detecting potentially hazardous near earth objects, the ATLAS data enable a range of astrophysical time domain science. To extract transients from the data stream requires a computing system to process the data, assimilate detections in time and space and associate them with known astrophysical sources. Here we describe the hardware and software infrastructure to produce a stream of clean, real, astrophysical transients in real time. This involves machine learning and boosted decision tree algorithms to identify extragalactic and Galactic transients. Typically we detect 10-15 supernova candidates per night which we immediately announce publicly. The ATLAS discoveries not only enable rapid follow-up of interesting sources but will provide complete statistical samples within the local volume of 100 Mpc. A simple comparison of the detected supernova rate within 100 Mpc, with no corrections for completeness, is already significantly higher (factor 1.5 to 2) than the current accepted rates.
  •  
19.
  • Waldenström, Jesper, 1985, et al. (author)
  • Absence of interferon-lambda 4 enhances spontaneous clearance of acute hepatitis C virus genotypes 1-3 infection
  • 2021
  • In: Scandinavian Journal of Gastroenterology. - : Informa UK Limited. - 0036-5521 .- 1502-7708. ; 56:7
  • Journal article (peer-reviewed)abstract
    • Objectives Absence of a functional interferon-lambda 4 (IFN-lambda 4) gene (IFNL4) predicts spontaneous resolution of acute hepatitis C virus (HCV) infections in regions with a predominance of genotype 1, whereas variants of the inosine triphosphate pyrophosphatase (ITPase) gene (ITPA) entailing reduced activity associate with increased sustained virologic response rates following some therapeutic regimens. This study aimed at investigating the impact of IFNL4 on acute HCV genotype 2 or 3 infections, and whether ITPase activity influenced outcome. Materials and Methods Two hundred and seven people who injected drugs (PWID) with documented anti-HCV seroconversion, and 57 PWID with reinfection with HCV were analyzed regarding IFNL4 (rs368234815 and rs12979860) and ITPA (rs1127354 and rs7270101), and longitudinally followed regarding HCV RNA. Results The spontaneous clearance of HCV infection in anti-HCV seronegative PWID was enhanced when IFN-lambda 4 was absent (44% vs. 20% for IFNL4 TT/TTrs1368234815 and Delta G(rs1368234815) respectively, p < .001; OR 3.2) across genotypes 1-3. The proportion lacking IFN-lambda 4 was further increased following resolution of repeated re-exposure to HCV (74% among re-infected participants who had cleared at least two documented HCV infections). ITPA genetic variants did not independently impact on the outcome, but among males lacking IFN-lambda 4, reduced ITPase activity markedly augmented the likelihood of resolution (65% vs. 29% for <100% and 100% ITPase activity, p = .006). Conclusions Absence of IFN-lambda 4 entails an enhanced likelihood of spontaneous resolution both following primary acute infection and repeated re-exposure to HCV across genotypes 1-3. Among men lacking IFN-lambda 4, reduced ITPase activity improved outcome.
  •  
20.
  •  
Skapa referenser, mejla, bekava och länka
  • Result 1-20 of 20

Kungliga biblioteket hanterar dina personuppgifter i enlighet med EU:s dataskyddsförordning (2018), GDPR. Läs mer om hur det funkar här.
Så här hanterar KB dina uppgifter vid användning av denna tjänst.

 
pil uppåt Close

Copy and save the link in order to return to this view