SwePub
Sök i SwePub databas

  Utökad sökning

Träfflista för sökning "WFRF:(Welter A) srt2:(2020-2024)"

Sökning: WFRF:(Welter A) > (2020-2024)

  • Resultat 1-6 av 6
Sortera/gruppera träfflistan
   
NumreringReferensOmslagsbildHitta
1.
  •  
2.
  • Bayrak Pehlivan, Ilknur, et al. (författare)
  • The climatic response of thermally integrated photovoltaic-electrolysis water splitting using Si and CIGS combined with acidic and alkaline electrolysis
  • 2020
  • Ingår i: Sustainable Energy & Fuels. - : ROYAL SOC CHEMISTRY. - 2398-4902. ; 4:12, s. 6011-6022
  • Tidskriftsartikel (refereegranskat)abstract
    • The Horizon 2020 project PECSYS aims to build a large area demonstrator for hydrogen production from solar energy via integrated photovoltaic (PV) and electrolysis systems of different types. In this study, Si- and CIGS-based photovoltaics are developed together with three different electrolyzer systems for use in the corresponding integrated devices. The systems are experimentally evaluated and a general model is developed to investigate the hydrogen yield under real climatic conditions for various thin film and silicon PV technologies and electrolyser combinations. PV characteristics using a Si heterojunction (SHJ), thin film CuInxGa1-xSe2, crystalline Si with passivated emitter rear totally diffused and thin film Si are used together with temperature dependent catalyst load curves from both acidic and alkaline approaches. Electrolysis data were collected from (i) a Pt-IrO2-based acidic electrolysis system, and (ii) NiMoW-NiO-based and (iii) Pt-Ni foam-based alkaline electrolysis systems. The calculations were performed for mid-European climate data from Julich, Germany, which will be the installation site. The best systems show an electricity-to-hydrogen conversion efficiency of 74% and over 12% solar-to-hydrogen (STH) efficiencies using both acidic and alkaline approaches and are validated with a smaller lab scale prototype. The results show that the lower power delivered by all the PV technologies under low irradiation is balanced by the lower demand for overpotentials for all the electrolysis approaches at these currents, with more or less retained STH efficiency over the full year if the catalyst area is the same as the PV area for the alkaline approach. The total yield of hydrogen, however, follows the irradiance, where a yearly hydrogen production of over 35 kg can be achieved for a 10 m(2) integrated PV-electrolysis system for several of the PV and electrolyser combinations that also allow a significant (100-fold) reduction in necessary electrolyser area for the acidic approach. Measuring the catalyst systems under intermittent and ramping conditions with different temperatures, a 5% lowering of the yearly hydrogen yield is extracted for some of the catalyst systems while the Pt-Ni foam-based alkaline system showed unaffected or even slightly increased yearly yield under the same conditions.
  •  
3.
  •  
4.
  • Johnson, Kara A., et al. (författare)
  • Structural connectivity predicts clinical outcomes of deep brain stimulation for Tourette syndrome
  • 2020
  • Ingår i: Brain. - : Oxford University Press. - 0006-8950 .- 1460-2156. ; 143, s. 2607-2623
  • Tidskriftsartikel (refereegranskat)abstract
    • Deep brain stimulation may be an effective therapy for select cases of severe, treatment-refractory Tourette syndrome; however, patient responses are variable, and there are no reliable methods to predict clinical outcomes. The objectives of this retrospective study were to identify the stimulation-dependent structural networks associated with improvements in tics and comorbid obsessive-compulsive behaviour, compare the networks across surgical targets, and determine if connectivity could be used to predict clinical outcomes. Volumes of tissue activated for a large multisite cohort of patients (n = 66) implanted bilaterally in globus pallidus internus (n = 34) or centromedial thalamus (n = 32) were used to generate probabilistic tractography to form a normative structural connectome. The tractography maps were used to identify networks that were correlated with improvement in tics or comorbid obsessive-compulsive behaviour and to predict clinical outcomes across the cohort. The correlated networks were then used to generate ‘reverse’ tractography to parcellate the total volume of stimulation across all patients to identify local regions to target or avoid. The results showed that for globus pallidus internus, connectivity to limbic networks, associative networks, caudate, thalamus, and cerebellum was positively correlated with improvement in tics; the model predicted clinical improvement scores (P = 0.003) and was robust to cross-validation. Regions near the anteromedial pallidum exhibited higher connectivity to the positively correlated networks than posteroventral pallidum, and volume of tissue activated overlap with this map was significantly correlated with tic improvement (P < 0.017). For centromedial thalamus, connectivity to sensorimotor networks, parietal-temporal-occipital networks, putamen, and cerebellum was positively correlated with tic improvement; the model predicted clinical improvement scores (P = 0.012) and was robust to cross-validation. Regions in the anterior/lateral centromedial thalamus exhibited higher connectivity to the positively correlated networks, but volume of tissue activated overlap with this map did not predict improvement (P > 0.23). For obsessive-compulsive behaviour, both targets showed that connectivity to the prefrontal cortex, orbitofrontal cortex, and cingulate cortex was positively correlated with improvement; however, only the centromedial thalamus maps predicted clinical outcomes across the cohort (P = 0.034), but the model was not robust to cross-validation. Collectively, the results demonstrate that the structural connectivity of the site of stimulation are likely important for mediating symptom improvement, and the networks involved in tic improvement may differ across surgical targets. These networks provide important insight on potential mechanisms and could be used to guide lead placement and stimulation parameter selection, as well as refine targets for neuromodulation therapies for Tourette syndrome.
  •  
5.
  • Manzanillas, L., et al. (författare)
  • Development of multi-element monolithic germanium detectors for X-ray detection at synchrotron facilities
  • 2023
  • Ingår i: Nuclear Instruments and Methods in Physics Research, Section A: Accelerators, Spectrometers, Detectors and Associated Equipment. - : Elsevier BV. - 0168-9002. ; 1047
  • Tidskriftsartikel (refereegranskat)abstract
    • In past years efforts have concentrated on the development of arrays of Silicon Drift Detectors for X-ray spectroscopy. This is in stark contrast to the little effort that has been devoted to the improvement of germanium detectors, in particular for synchrotron applications. Germanium detectors have better energy resolution and are more efficient in detecting high energy photons than silicon detectors. In this context, the detector consortium of the European project LEAPS-INNOV has set an ambitious R&D program devoted to the development of a new generation of multi-element monolithic germanium detectors for X-ray detection. In order to improve the performance of the detector under development, simulations of the different detector design options have been performed. In this contribution, the efforts in terms of R&D are outlined with a focus on the modelization of the detector geometry and first performance results. These performance results show that a signal-to-background ratio larger than 1000 can be achieved in the energy range of interest from 5 keV to 100 keV.
  •  
6.
  • Orsini, F., et al. (författare)
  • XAFS-DET : A new high throughout X-ray spectroscopy detector system developed for synchrotron applications
  • 2023
  • Ingår i: Nuclear Instruments and Methods in Physics Research, Section A: Accelerators, Spectrometers, Detectors and Associated Equipment. - : Elsevier BV. - 0168-9002. ; 1045
  • Tidskriftsartikel (refereegranskat)abstract
    • The high brilliance and coherent beams resulting from recent upgraded synchrotron radiation facilities open the way for a large range of experiments, where detectors play a key role in the techniques and methods developed to fully exploit the upgraded synchrotron. For instance, one of the major limitations of XAFS experiment is the performance of the detectors. In order to be able to measure more challenging samples and to cope with the very high photon flux of the current and future (diffraction limited) sources, technological developments of detectors are necessary. In this framework, the germanium detector developed in the European project LEAPS-INNOV aims at improving several technological aspects. This type of detector represents a very important class of instruments for X-ray spectroscopy due to the fact that they enable to detect efficiently photons of considerable higher energy with respect to silicon detectors. The objective of this project consists in pushing the detector performance beyond the state-of-the-art. Preliminary layout and main choices for the design studies of this new detector are presented in this paper.
  •  
Skapa referenser, mejla, bekava och länka
  • Resultat 1-6 av 6

Kungliga biblioteket hanterar dina personuppgifter i enlighet med EU:s dataskyddsförordning (2018), GDPR. Läs mer om hur det funkar här.
Så här hanterar KB dina uppgifter vid användning av denna tjänst.

 
pil uppåt Stäng

Kopiera och spara länken för att återkomma till aktuell vy