SwePub
Sök i SwePub databas

  Utökad sökning

Träfflista för sökning "WFRF:(Wilson Hodge C.) srt2:(2010-2014)"

Sökning: WFRF:(Wilson Hodge C.) > (2010-2014)

  • Resultat 1-15 av 15
Sortera/gruppera träfflistan
   
NumreringReferensOmslagsbildHitta
1.
  • Feroci, M., et al. (författare)
  • The large observatory for x-ray timing
  • 2014
  • Ingår i: Proceedings of SPIE - The International Society for Optical Engineering. - : SPIE. - 9780819496126
  • Konferensbidrag (refereegranskat)abstract
    • The Large Observatory For x-ray Timing (LOFT) was studied within ESA M3 Cosmic Vision framework and participated in the final downselection for a launch slot in 2022-2024. Thanks to the unprecedented combination of effective area and spectral resolution of its main instrument, LOFT will study the behaviour of matter under extreme conditions, such as the strong gravitational field in the innermost regions of accretion flows close to black holes and neutron stars, and the supranuclear densities in the interior of neutron stars. The science payload is based on a Large Area Detector (LAD, 10 m2 effective area, 2-30 keV, 240 eV spectral resolution, 1° collimated field of view) and a Wide Field Monitor (WFM, 2-50 keV, 4 steradian field of view, 1 arcmin source location accuracy, 300 eV spectral resolution). The WFM is equipped with an on-board system for bright events (e.g. GRB) localization. The trigger time and position of these events are broadcast to the ground within 30 s from discovery. In this paper we present the status of the mission at the end of its Phase A study.
  •  
2.
  • Feroci, M., et al. (författare)
  • LOFT - The large observatory for x-ray timing
  • 2012
  • Ingår i: Proceedings of SPIE - The International Society for Optical Engineering. - : SPIE - International Society for Optical Engineering. - 9780819491442 ; , s. 84432D-
  • Konferensbidrag (refereegranskat)abstract
    • The LOFT mission concept is one of four candidates selected by ESA for the M3 launch opportunity as Medium Size missions of the Cosmic Vision programme. The launch window is currently planned for between 2022 and 2024. LOFT is designed to exploit the diagnostics of rapid X-ray flux and spectral variability that directly probe the motion of matter down to distances very close to black holes and neutron stars, as well as the physical state of ultradense matter. These primary science goals will be addressed by a payload composed of a Large Area Detector (LAD) and a Wide Field Monitor (WFM). The LAD is a collimated (<1 degree field of view) experiment operating in the energy range 2-50 keV, with a 10 m2 peak effective area and an energy resolution of 260 eV at 6 keV. The WFM will operate in the same energy range as the LAD, enabling simultaneous monitoring of a few-steradian wide field of view, with an angular resolution of <5 arcmin. The LAD and WFM experiments will allow us to investigate variability from submillisecond QPO's to yearlong transient outbursts. In this paper we report the current status of the project.
  •  
3.
  • Feroci, M., et al. (författare)
  • The Large Observatory for X-ray Timing (LOFT)
  • 2012
  • Ingår i: Experimental Astronomy. - : Springer Science and Business Media LLC. - 0922-6435 .- 1572-9508. ; 34:2, s. 415-444
  • Tidskriftsartikel (refereegranskat)abstract
    • High-time-resolution X-ray observations of compact objects provide direct access to strong-field gravity, to the equation of state of ultradense matter and to black hole masses and spins. A 10 m(2)-class instrument in combination with good spectral resolution is required to exploit the relevant diagnostics and answer two of the fundamental questions of the European Space Agency (ESA) Cosmic Vision Theme "Matter under extreme conditions", namely: does matter orbiting close to the event horizon follow the predictions of general relativity? What is the equation of state of matter in neutron stars? The Large Observatory For X-ray Timing (LOFT), selected by ESA as one of the four Cosmic Vision M3 candidate missions to undergo an assessment phase, will revolutionise the study of collapsed objects in our galaxy and of the brightest supermassive black holes in active galactic nuclei. Thanks to an innovative design and the development of large-area monolithic silicon drift detectors, the Large Area Detector (LAD) on board LOFT will achieve an effective area of similar to 12 m(2) (more than an order of magnitude larger than any spaceborne predecessor) in the 2-30 keV range (up to 50 keV in expanded mode), yet still fits a conventional platform and small/medium-class launcher. With this large area and a spectral resolution of < 260 eV, LOFT will yield unprecedented information on strongly curved spacetimes and matter under extreme conditions of pressure and magnetic field strength.
  •  
4.
  • Abdo, A. A., et al. (författare)
  • Fermi Large Area Telescope constraints on the gamma-ray opacity of the universe
  • 2010
  • Ingår i: Astrophysical Journal. - : Institute of Physics (IOP). - 0004-637X .- 1538-4357. ; 723:2, s. 1082-1096
  • Tidskriftsartikel (refereegranskat)abstract
    • The extragalactic background light (EBL) includes photons with wavelengths from ultraviolet to infrared, which are effective at attenuating gamma rays with energy above similar to 10 GeV during propagation from sources at cosmological distances. This results in a redshift- and energy-dependent attenuation of the gamma-ray flux of extragalactic sources such as blazars and gamma-ray bursts (GRBs). The Large Area Telescope on board Fermi detects a sample of gamma-ray blazars with redshift up to z similar to 3, and GRBs with redshift up to z similar to 4.3. Using photons above 10 GeV collected by Fermi over more than one year of observations for these sources, we investigate the effect of gamma-ray flux attenuation by the EBL. We place upper limits on the gamma-ray opacity of the universe at various energies and redshifts and compare this with predictions from well-known EBL models. We find that an EBL intensity in the optical-ultraviolet wavelengths as great as predicted by the "baseline" model of Stecker et al. can be ruled out with high confidence.
  •  
5.
  • Ackermann, M., et al. (författare)
  • Fermi Detection of γ-Ray Emission from the M2 Soft X-Ray Flare on 2010 June 12
  • 2012
  • Ingår i: Astrophysical Journal. - 0004-637X .- 1538-4357. ; 745:2, s. 144-
  • Tidskriftsartikel (refereegranskat)abstract
    • The Geostationary Operational Environmental Satellite (GOES) M2-class solar flare, SOL2010-06-12T00: 57, was modest in many respects yet exhibited remarkable acceleration of energetic particles. The flare produced an similar to 50 s impulsive burst of hard X-and gamma-ray emission up to at least 400 MeV observed by the Fermi Gamma-ray Burst Monitor and Large Area Telescope experiments. The remarkably similar hard X-ray and high-energy gamma-ray time profiles suggest that most of the particles were accelerated to energies greater than or similar to 300 MeV with a delay of similar to 10 s from mildly relativistic electrons, but some reached these energies in as little as similar to 3 s. The gamma-ray line fluence from this flare was about 10 times higher than that typically observed from this modest GOES class of X-ray flare. There is no evidence for time-extended >100 MeV emission as has been found for other flares with high-energy gamma-rays.
  •  
6.
  • Ackermann, M., et al. (författare)
  • Fermi-LAT Observations of the Gamma-Ray Burst GRB 130427A
  • 2014
  • Ingår i: Science. - : American Association for the Advancement of Science (AAAS). - 0036-8075 .- 1095-9203. ; 343:6166, s. 42-47
  • Tidskriftsartikel (refereegranskat)abstract
    • The observations of the exceptionally bright gamma-ray burst (GRB) 130427A by the Large Area Telescope aboard the Fermi Gamma-ray Space Telescope provide constraints on the nature of these unique astrophysical sources. GRB 130427A had the largest fluence, highest-energy photon (95 GeV), longest gamma-ray duration (20 hours), and one of the largest isotropic energy releases ever observed from a GRB. Temporal and spectral analyses of GRB 130427A challenge the widely accepted model that the nonthermal high-energy emission in the afterglow phase of GRBs is synchrotron emission radiated by electrons accelerated at an external shock.
  •  
7.
  • Ackermann, M., et al. (författare)
  • DETECTION OF A SPECTRAL BREAK IN THE EXTRA HARD COMPONENT OF GRB 090926A
  • 2011
  • Ingår i: Astrophysical Journal. - 0004-637X .- 1538-4357. ; 729:2, s. 114-
  • Tidskriftsartikel (refereegranskat)abstract
    • We report on the observation of the bright, long gamma-ray burst, GRB 090926A, by the Gamma-ray Burst Monitor and Large Area Telescope (LAT) instruments on board the Fermi Gamma-ray Space Telescope. GRB 090926A shares several features with other bright LAT bursts. In particular, it clearly shows a short spike in the light curve that is present in all detectors that see the burst, and this in turn suggests that there is a common region of emission across the entire Fermi energy range. In addition, while a separate high-energy power-law component has already been observed in other gamma-ray bursts, here we report for the first time the detection with good significance of a high-energy spectral break (or cutoff) in this power-law component around 1.4 GeV in the time-integrated spectrum. If the spectral break is caused by opacity to electron-positron pair production within the source, then this observation allows us to compute the bulk Lorentz factor for the outflow, rather than a lower limit.
  •  
8.
  • Ackermann, M., et al. (författare)
  • Fermi observations of GRB 090510 : A short-hard gamma-ray burst with an additional, hard power-law component from 10 keV to GeV energies
  • 2010
  • Ingår i: Astrophysical Journal. - 0004-637X .- 1538-4357. ; 716:2, s. 1178-1190
  • Tidskriftsartikel (refereegranskat)abstract
    • We present detailed observations of the bright short-hard gamma-ray burst GRB 090510 made with the Gammaray Burst Monitor (GBM) and Large Area Telescope (LAT) on board the Fermi observatory. GRB 090510 is the first burst detected by the LAT that shows strong evidence for a deviation from a Band spectral fitting function during the prompt emission phase. The time-integrated spectrum is fit by the sum of a Band function with E-peak = 3.9 +/- 0.3 MeV, which is the highest yet measured, and a hard power-law component with photon index -1.62 +/- 0.03 that dominates the emission below approximate to 20 keV and above approximate to 100 MeV. The onset of the high-energy spectral component appears to be delayed by similar to 0.1 s with respect to the onset of a component well fit with a single Band function. A faint GBM pulse and a LAT photon are detected 0.5 s before the main pulse. During the prompt phase, the LAT detected a photon with energy 30.5(-2.6)(+5.8) GeV, the highest ever measured from a short GRB. Observation of this photon sets a minimum bulk outflow Lorentz factor, Gamma greater than or similar to 1200, using simple.. opacity arguments for this GRB at redshift z = 0.903 and a variability timescale on the order of tens of ms for the approximate to 100 keV-few MeV flux. Stricter high confidence estimates imply Gamma greater than or similar to 1000 and still require that the outflows powering short GRBs are at least as highly relativistic as those of long-duration GRBs. Implications of the temporal behavior and power-law shape of the additional component on synchrotron/synchrotron self-Compton, external-shock synchrotron, and hadronic models are considered.
  •  
9.
  • Axelsson, Magnus, et al. (författare)
  • GRB110721A : AN EXTREME PEAK ENERGY AND SIGNATURES OF THE PHOTOSPHERE
  • 2012
  • Ingår i: Astrophysical Journal Letters. - 2041-8205. ; 757:2
  • Tidskriftsartikel (refereegranskat)abstract
    • GRB110721A was observed by the Fermi Gamma-ray Space Telescope using its two instruments, the Large Area Telescope (LAT) and the Gamma-ray Burst Monitor (GBM). The burst consisted of one major emission episode which lasted for similar to 24.5 s (in the GBM) and had a peak flux of (5.7 +/- 0.2) x 10(-5) erg s(-1) cm(-2). The time-resolved emission spectrum is best modeled with a combination of a Band function and a blackbody spectrum. The peak energy of the Band component was initially 15 +/- 2 MeV, which is the highest value ever detected in a GRB. This measurement was made possible by combining GBM/BGO data with LAT Low Energy events to achieve continuous 10-100 MeV coverage. The peak energy later decreased as a power law in time with an index of -1.89 +/- 0.10. The temperature of the blackbody component also decreased, starting from similar to 80 keV, and the decay showed a significant break after similar to 2 s. The spectrum provides strong constraints on the standard synchrotron model, indicating that alternative mechanisms may give rise to the emission at these energies.
  •  
10.
  • Ackermann, M., et al. (författare)
  • FERMI OBSERVATIONS OF HIGH-ENERGY GAMMA-RAY EMISSION FROM GRB 090217A
  • 2010
  • Ingår i: ASTROPHYS J LETT. - 2041-8205. ; 717:2, s. L127-L132
  • Tidskriftsartikel (refereegranskat)abstract
    • The Fermi observatory is advancing our knowledge of gamma-ray bursts (GRBs) through pioneering observations at high energies, covering more than seven decades in energy with the two on-board detectors, the Large Area Telescope (LAT) and the Gamma-ray Burst Monitor (GBM). Here, we report on the observation of the long GRB 090217A which triggered the GBM and has been detected by the LAT with a significance greater than 9 sigma. We present the GBM and LAT observations and on-ground analyses, including the time-resolved spectra and the study of the temporal profile from 8 keV up to similar to 1 GeV. All spectra are well reproduced by a Band model. We compare these observations to the first two LAT-detected, long bursts GRB 080825C and GRB 080916C. These bursts were found to have time-dependent spectra and exhibited a delayed onset of the high-energy emission, which are not observed in the case of GRB 090217A. We discuss some theoretical implications for the high-energy emission of GRBs.
  •  
11.
  • Preece, R., et al. (författare)
  • The First Pulse of the Extremely Bright GRB 130427A : A Test Lab for Synchrotron Shocks
  • 2014
  • Ingår i: Science. - : American Association for the Advancement of Science (AAAS). - 0036-8075 .- 1095-9203. ; 343:6166, s. 51-54
  • Tidskriftsartikel (refereegranskat)abstract
    • Gamma-ray burst (GRB) 130427A is one of the most energetic GRBs ever observed. The initial pulse up to 2.5 seconds is possibly the brightest well-isolated pulse observed to date. A fine time resolution spectral analysis shows power-law decays of the peak energy from the onset of the pulse, consistent with models of internal synchrotron shock pulses. However, a strongly correlated power-law behavior is observed between the luminosity and the spectral peak energy that is inconsistent with curvature effects arising in the relativistic outflow. It is difficult for any of the existing models to account for all of the observed spectral and temporal behaviors simultaneously.
  •  
12.
  • Ackermann, M., et al. (författare)
  • Constraining The High-Energy Emission From Gamma-Ray Bursts With Fermi
  • 2012
  • Ingår i: Astrophysical Journal. - 0004-637X .- 1538-4357. ; 754:2, s. 121-
  • Tidskriftsartikel (refereegranskat)abstract
    • We examine 288 gamma-ray bursts (GRBs) detected by the Fermi Gamma-ray Space Telescope's Gamma-ray Burst Monitor (GBM) that fell within the field of view of Fermi's Large Area Telescope (LAT) during the first 2.5 years of observations, which showed no evidence for emission above 100 MeV. We report the photon flux upper limits in the 0.1-10 GeV range during the prompt emission phase as well as for fixed 30 s and 100 s integrations starting from the trigger time for each burst. We compare these limits with the fluxes that would be expected from extrapolations of spectral fits presented in the first GBM spectral catalog and infer that roughly half of the GBM-detected bursts either require spectral breaks between the GBM and LAT energy bands or have intrinsically steeper spectra above the peak of the nu F-nu spectra (E-pk). In order to distinguish between these two scenarios, we perform joint GBM and LAT spectral fits to the 30 brightest GBM-detected bursts and find that a majority of these bursts are indeed softer above E-pk than would be inferred from fitting the GBM data alone. Approximately 20% of this spectroscopic subsample show statistically significant evidence for a cutoff in their high-energy spectra, which if assumed to be due to gamma gamma attenuation, places limits on the maximum Lorentz factor associated with the relativistic outflow producing this emission. All of these latter bursts have maximum Lorentz factor estimates that are well below the minimum Lorentz factors calculated for LAT-detected GRBs, revealing a wide distribution in the bulk Lorentz factor of GRB outflows and indicating that LAT-detected bursts may represent the high end of this distribution.
  •  
13.
  • Gruber, D, et al. (författare)
  • Fermi/GBM observations of the ultra-long GRB 091024. A burst with an optical flash
  • 2011
  • Ingår i: Astronomy and Astrophysics. - : EDP Sciences. - 0004-6361 .- 1432-0746. ; 528:A15
  • Tidskriftsartikel (refereegranskat)abstract
    • Aims: In this paper we examine gamma-ray and optical data of GRB 091024, a gamma-ray burst (GRB) with an extremely long duration of T90 $\approx$ 1020 s, as observed with the Fermi Gamma-ray Burst Monitor (GBM). Methods: We present spectral analysis of all three distinct emission episodes using data from Fermi/GBM. Because of the long nature of this event, many ground-based optical telescopes slewed to its location within a few minutes and thus were able to observe the GRB during its active period. We compare the optical and gamma-ray light curves. Furthermore, we estimate a lower limit on the bulk Lorentz factor from the variability and spectrum of the GBM light curve and compare it with that obtained from the peak time of the forward shock of the optical afterglow. Results: From the spectral analysis we note that, despite its unusually long duration, this burst is similar to other long GRBs, i.e. there is spectral evolution (both the peak energy and the spectral index vary with time) and spectral lags are measured. We find that the optical light curve is highly anti-correlated to the prompt gamma-ray emission, with the optical emission reaching the maximum during an epoch of quiescence in the prompt emission. We interpret this behavior as the reverse shock (optical flash), expected in the internal-external shock model of GRB emission but observed only in a handful of GRBs so far. The lower limit on the initial Lorentz factor deduced from the variability time scale (Γmin = 195_-110+90) is consistent within the error to the one obtained using the peak time of the forward shock (Γ0 = 120) and is also consistent with Lorentz factors of other long GRBs.
  •  
14.
  • Gruber, D, et al. (författare)
  • Rest-frame properties of 32 gamma-ray bursts observed by the Fermi Gamma-ray Burst Monitor
  • 2011
  • Ingår i: Astronomy and Astrophysics. - : EDP Sciences. - 0004-6361 .- 1432-0746. ; 531:A20
  • Tidskriftsartikel (refereegranskat)abstract
    • Aims: In this paper we study the main spectral and temporal properties of gamma-ray bursts (GRBs) observed by Fermi/GBM. We investigate these key properties of GRBs in the rest-frame of the progenitor and test for possible intra-parameter correlations to better understand the intrinsic nature of these events. Methods: Our sample comprises 32 GRBs with measured redshift that were observed by GBM until August 2010. 28 of them belong to the long-duration population and 4 events were classified as short/hard bursts. For all of these events we derive, where possible, the intrinsic peak energy in the νFν spectrum (Ep,rest), the duration in the rest-frame, defined as the time in which 90% of the burst fluence was observed (T90,rest) and the isotropic equivalent bolometric energy (Eiso). Results: The distribution of Ep,rest has mean and median values of 1.1 MeV and 750 keV, respectively. A log-normal fit to the sample of long bursts peaks at ~800 keV. No high-Ep population is found but the distribution is biased against low Ep values. We find the lowest possible Ep that GBM can recover to be $\approx$ 15 keV. The T90,rest distribution of long GRBs peaks at ~10 s. The distribution of Eiso has mean and median values of 8.9 × 1052 erg and 8.2 × 1052 erg, respectively. We confirm the tight correlation between Ep,rest and Eiso (Amati relation) and the one between Ep,rest and the 1-s peak luminosity (Lp) (Yonetoku relation). Additionally, we observe a parameter reconstruction effect, i.e. the low-energy power law index α gets softer when Ep is located at the lower end of the detector energy range. Moreover, we do not find any significant cosmic evolution of neither Ep,rest nor T90,rest.
  •  
15.
  • von Kienlin, Andreas, et al. (författare)
  • The Second Fermi GBM Gamma-Ray Burst Catalog : The First Four Years
  • 2014
  • Ingår i: Astrophysical Journal Supplement Series. - : Institute of Physics Publishing (IOPP). - 0067-0049 .- 1538-4365. ; 211:1
  • Tidskriftsartikel (refereegranskat)abstract
    • This is the second of a series of catalogs of gamma-ray bursts (GRBs) observed with the Fermi Gamma-ray Burst Monitor (GBM). It extends the first two-year catalog by two more years, resulting in an overall list of 953 GBM triggered GRBs. The intention of the GBM GRB catalog is to provide information to the community on the most important observables of the GBM detected GRBs. For each GRB the location and main characteristics of the prompt emission, the duration, peak flux and fluence are derived. The latter two quantities are calculated for the 50-300 keV energy band, where the maximum energy release of GRBs in the instrument reference system is observed and also for a broader energy band from 10-1000 keV, exploiting the full energy range of GBMs low-energy detectors. Furthermore, information is given on the settings and modifications of the triggering criteria and exceptional operational conditions during years three and four in the mission. This second catalog is an official product of the Fermi GBM science team, and the data files containing the complete results are available from the High-Energy Astrophysics Science Archive Research Center.
  •  
Skapa referenser, mejla, bekava och länka
  • Resultat 1-15 av 15

Kungliga biblioteket hanterar dina personuppgifter i enlighet med EU:s dataskyddsförordning (2018), GDPR. Läs mer om hur det funkar här.
Så här hanterar KB dina uppgifter vid användning av denna tjänst.

 
pil uppåt Stäng

Kopiera och spara länken för att återkomma till aktuell vy