SwePub
Sök i SwePub databas

  Utökad sökning

Träfflista för sökning "WFRF:(Wolf Watz H) srt2:(1995-1999)"

Sökning: WFRF:(Wolf Watz H) > (1995-1999)

  • Resultat 1-6 av 6
Sortera/gruppera träfflistan
   
NumreringReferensOmslagsbildHitta
1.
  • Lundgren, E, et al. (författare)
  • Invasin of Yersinia pseudotuberculosis activates human peripheral B cells.
  • 1996
  • Ingår i: Infection and Immunity. - 0019-9567 .- 1098-5522. ; 64:3, s. 829-35
  • Tidskriftsartikel (refereegranskat)abstract
    • The Yersinia pseudotuberculosis cell surface-located protein invasin was found to promote binding between the pathogen and resting peripheral B cells via beta 1 integrin receptors (CD29). B cells responded by expressing several activation markers and by growing, In contrast, T cells did not react, although these cells express CD29. An isogenic invA mutant failed to activate B cells. The mutation could be complemented by providing the invA+ gene in trans. Purified invasin alone did not activate B cells, although it was able to block the binding of bacteria to the cells.
  •  
2.
  • Arencibia, I, et al. (författare)
  • Yersinia invasin, a bacterial beta1-integrin ligand, is a potent inducer of lymphocyte motility and migration to collagen type IV and fibronectin.
  • 1997
  • Ingår i: Journal of Immunology. - 0022-1767 .- 1550-6606. ; 159:4, s. 1853-9
  • Tidskriftsartikel (refereegranskat)abstract
    • The Yersinia pseudotuberculosis invasin protein was found to be a potent inducer of pseudopodia formation and chemotactic and haptotactic migration in human T lymphocytes. Checkerboard analysis confirmed that migration was directional. The Yersinia invasin triggered migration of otherwise poorly migratory normal T cells on fibronectin and in particular on collagen type IV, and augmented the migration of leukemic T cell lines on these components. Invasin-induced lymphocyte migration was inhibited by staurosporin that selectively prevented pseudopodia formation but, noteworthy, augmented adhesion. The motogenic and attractant properties of invasin (Inv) were mediated via beta1-integrins, as shown by lack of effect of Inv on the motility of a beta1-integrin-negative lymphoid cell line and inhibition of invasin-induced lymphocyte motility by anti-beta1 Abs. Inv was markedly more effective than the extracellular matrix components fibronectin, collagen type IV, and laminin, which also interact with lymphocyte beta1-integrins, with respect to induction of pseudopodia, chemotaxis, and haptotaxis. Thus, Yersinia invasin is a model ligand for induction of lymphocyte motility via beta1-integrins. The extraordinary capacity of Inv to trigger and guide T lymphocyte motility and potentiate lymphocyte migration to extracellular matrix components may be of pathogenetic significance for the movement of lymphocytes to extraintestinal sites secondary to Yersinia infection.
  •  
3.
  • Andersson, K, et al. (författare)
  • YopH of Yersinia pseudotuberculosis interrupts early phosphotyrosine signalling associated with phagocytosis.
  • 1996
  • Ingår i: Molecular Microbiology. - 0950-382X .- 1365-2958. ; 20:5, s. 1057-69
  • Tidskriftsartikel (refereegranskat)abstract
    • The PTPase YopH of Yersinia is essential to the ability of these bacteria to block phagocytosis. Wild-type Yersinia pseudotuberculosis, but not the yopH mutant strain, resisted phagocytosis by J774 cells. Ingestion of a yopH mutant was dependent on tyrosine kinase activity. Transcomplementation with wild-type yopH restored the anti-phagocytic effect, whereas introduction of the gene encoding the catalytically inactive yopHC403A was without effect. The PTPase inhibitor orthovanadate impaired the anti-phagocytic effect of the wild-type strain, further demonstrating the importance of bacteria-derived PTPase activity for this event. The ability to resist phagocytosis indicates that the effect of the bacterium is immediately exerted when it becomes associated with the phagocyte. Within 30 s after the onset of infection, wild-type Y. pseudotuberculosis caused a YopH-dependent dephosphorylation of phosphotyrosine proteins in J774 cells. Furthermore, interaction of the cells with phagocytosable strains led to a rapid and transient increase in tyrosine phosphorylation of paxillin and some other proteins, an event dependent on the presence of the bacterial surface-located protein invasin. Co-infection with the phagocytosable strain and the wild-type strain abolished the induction of tyrosine phosphorylation. Taken together, the present findings demonstrate an immediate YopH-mediated dephosphorylation of macrophage phosphotyrosine proteins, suggesting that this PTPase acts by preventing early phagocytosis-linked signalling in the phagocyte.
  •  
4.
  • O'Toole, R, et al. (författare)
  • Chemotactic motility is required for invasion of the host by the fish pathogen Vibrio anguillarum.
  • 1996
  • Ingår i: Molecular Microbiology. - 0950-382X .- 1365-2958. ; 19:3, s. 625-637
  • Tidskriftsartikel (refereegranskat)abstract
    • The role of the flagellum and motility in the virulence of the marine fish pathogen Vibrio anguillarum was examined. Non-motile mutants were generated by transposon mutagenesis. Infectivity studies revealed that disruption of the flagellum and subsequent loss of motility correlated with an approximate 500-fold decrease in virulence when fish were inoculated by immersion in bacteria-containing water. However, the flagellar filament and motility were not required for pathogenicity following intraperitoneal injection of fish. The transposon-insertion site for six mutants was determined by cloning and sequencing of the Vibrio DNA flanking the transposon. V. anguillarum genes whose products showed strong homology to proteins with an established role in flagellum biosynthesis were identified. One of the aflagellate mutants had a transposon insertion in the rpoN gene of V. anguillarum. This rpoN mutant failed to grow at low concentrations of available iron and was avirulent by both the immersion and intraperitoneal modes of inoculation. A chemotaxis gene, cheR, was located upstream of one transposon insertion and an in-frame deletion was constructed in the coding region of this gene. The resulting non-chemotactic mutant exhibited wild-type pathogenicity when injected intra-peritoneally into fish but showed a decrease in virulence similar to that seen for the non-motile aflagellate mutants following immersion infection. Hence, chemotactic motility is a required function of the flagellum for the virulence of V. anguillarum.
  •  
5.
  • O'Toole, R, et al. (författare)
  • RpoN of the fish pathogen Vibrio (Listonella) anguillarum is essential for flagellum production and virulence by the water-borne but not intraperitoneal route of inoculation.
  • 1997
  • Ingår i: Microbiology. - : Microbiology Society. - 1350-0872 .- 1465-2080. ; 143 ( Pt 12)
  • Tidskriftsartikel (refereegranskat)abstract
    • To investigate the involvement of RpoN in flagellum production and pathogenicity of Vibrio (Listonella) anguillarum, the rpoN gene was cloned and sequenced. The deduced product of the rpoN gene displayed strong homology to the alternative sigma 54 factor (RpoN) of numerous species of bacteria. In addition, partial sequencing of rpoN-linked ORFs revealed a marked resemblance to similarly located ORFs in other bacterial species. A polar insertion or an in-frame deletion in the coding region of rpoN abolished expression of the flagellin subunits and resulted in loss of motility. Introduction of the rpoN gene of V. anguillarum or Pseudomonas putida into the rpoN mutants restored flagellation and motility. The rpoN mutants were proficient in the expression of other proposed virulence determinants of V. anguillarum, such as ability to grow under low available iron conditions, and expression of the LPS O-antigen and of haemolytic and proteolytic extracellular products. The infectivity of the rpoN mutants with respect to the wild-type strain was unaffected following intraperitoneal injection of fish but was reduced significantly when fish were immersed in bacteria-containing water. Thus, RpoN does not appear to regulate any factors required for virulence subsequent to penetration of the fish epithelium, but is important in the infection of fish by water-borne V. anguillarum.
  •  
6.
  •  
Skapa referenser, mejla, bekava och länka
  • Resultat 1-6 av 6

Kungliga biblioteket hanterar dina personuppgifter i enlighet med EU:s dataskyddsförordning (2018), GDPR. Läs mer om hur det funkar här.
Så här hanterar KB dina uppgifter vid användning av denna tjänst.

 
pil uppåt Stäng

Kopiera och spara länken för att återkomma till aktuell vy