SwePub
Sök i SwePub databas

  Utökad sökning

Träfflista för sökning "WFRF:(Wolf Watz Magnus) srt2:(2020-2024)"

Sökning: WFRF:(Wolf Watz Magnus) > (2020-2024)

  • Resultat 1-19 av 19
Sortera/gruppera träfflistan
   
NumreringReferensOmslagsbildHitta
1.
  • Orädd, Fredrik, 1994- (författare)
  • Determining the effects of regulatory parameters on the structural dynamics of P-type ATPase membrane transporters
  • 2024
  • Doktorsavhandling (övrigt vetenskapligt/konstnärligt)abstract
    • Proteins are macromolecular machines with roles in all cellular activities and structures. The functional properties of each protein is the result of its combination of 3D-structure and inherent dynamics, and a wealth of structural and dynamic mechanisms have evolved to regulate protein activity. P-type ATPases are membrane transport proteins that hydrolyze ATP to move cations across membranes. These proteins are involved in important biological functions such as Ca2+ signaling and Cu+ homeostasis, making proper regulation critical. Adenylate kinase (AdK) is a small, soluble protein that plays a role in energy homeostasis by interconverting ATP, AMP, and ADP, which are bound by two substrate binding domains. In this thesis, the effect of regulatory parameters on the structural dynamics of Cu+-ATPases and the sarcoplasmic/endoplasmic Ca2+-ATPase (SERCA) was investigated, together with the reaction dynamics of AdK.In Paper III, the human Cu+-ATPase ATP7B was simulated with (holo) and without (apo) Cu+ bound to the regulatory metal binding domains (MBDs, with MBD-1 closest to the core protein). In the holo state, the MBD chain was more dynamic and extended, and MBD-2 approached the membrane Cu+ entry site. In Paper IV, the stability of the interaction between MBD-2 and the Cu+-entry site was evaluated using MD simulations, showing that the interaction was stable in the cytosol-open E1 state, but not in the lumen-facing E2P state. An interaction site between MBD-3 and the cytoplasmic domains was also found, where MBD-3 might inhibit activity by interfering with functional motions. Finally, in Paper II, Cu+ entry into the membrane high-affinity Cu+-binding site was simulated, showing that a proposed initial binding site was transient and that the Cu+ ion could move deeper into the membrane domain. In Paper I, we used time-resolved X-ray solution scattering (TR-XSS) to show a simultaneous closing of the substrate binding domains in AdK, which included a partial unfolding and refolding event in the ATP-binding domain. Paper VI demonstrated that a novel time-resolved setup based on detector readout at the MAX IV beamline CoSAXS could trigger and detect AdK structural dynamics.In Paper V, TR-XSS experiments showed that the rate-limiting step in skeletal-muscle SERCA1a was an E1-to-E2P intermediate at both low and high Ca2+ concentrations. An inhibitory effect at high Ca2+ concentration was explained by a fraction of SERCA molecules stalling in the ATP-binding/phosphorylation step. In Paper VII, TR-XSS experiments showed that the housekeeping isoform SERCA2b, which is slower but has higher Ca2+ affinity than the other SERCA isoforms, shared the same rate-limiting step as the SERCA1a isoform, but with a longer rise-time. Deletion of the SERCA2b luminal extension (LE) shifted the rate-limiting step to ATP-binding/phosphorylation, possibly because of LE-stabilization of the ATP-bound structure. These papers demonstrated the capability of TR-XSS to detect changes in rate-limiting steps and to investigate how protein structural dynamics respond to mutations and inhibitory conditions.
  •  
2.
  • Orädd, Fredrik, et al. (författare)
  • Tracking the ATP-binding response in adenylate kinase in real time
  • 2021
  • Ingår i: Science Advances. - : American Association for the Advancement of Science. - 2375-2548. ; 7:47
  • Tidskriftsartikel (refereegranskat)abstract
    • The biological function of proteins is critically dependent on dynamics inherent to the native structure. Such structural dynamics obey a predefined order and temporal timing to execute the specific reaction. Determination of the cooperativity of key structural rearrangements requires monitoring protein reactions in real time. In this work, we used time-resolved x-ray solution scattering (TR-XSS) to visualize structural changes in the Escherichia coli adenylate kinase (AdK) enzyme upon laser-induced activation of a protected ATP substrate. A 4.3-ms transient intermediate showed partial closing of both the ATP- and AMP-binding domains, which indicates a cooperative closing mechanism. The ATP-binding domain also showed local unfolding and breaking of an Arg131-Asp146 salt bridge. Nuclear magnetic resonance spectroscopy data identified similar unfolding in an Arg131Ala AdK mutant, which refolded in a closed, substrate-binding conformation. The observed structural dynamics agree with a “cracking mechanism” proposed to underlie global structural transformation, such as allostery, in proteins.
  •  
3.
  •  
4.
  • Dulko-Smith, Beata, et al. (författare)
  • Mechanistic basis for a connection between the catalytic step and slow opening dynamics of adenylate kinase
  • 2023
  • Ingår i: Journal of Chemical Information and Modeling. - : American Chemical Society (ACS). - 1549-9596 .- 1549-960X. ; 63:5, s. 1556-1569
  • Tidskriftsartikel (refereegranskat)abstract
    • Escherichia coli adenylate kinase (AdK) is a small, monomeric enzyme that synchronizes the catalytic step with the enzyme’s conformational dynamics to optimize a phosphoryl transfer reaction and the subsequent release of the product. Guided by experimental measurements of low catalytic activity in seven single-point mutation AdK variants (K13Q, R36A, R88A, R123A, R156K, R167A, and D158A), we utilized classical mechanical simulations to probe mutant dynamics linked to product release, and quantum mechanical and molecular mechanical calculations to compute a free energy barrier for the catalytic event. The goal was to establish a mechanistic connection between the two activities. Our calculations of the free energy barriers in AdK variants were in line with those from experiments, and conformational dynamics consistently demonstrated an enhanced tendency toward enzyme opening. This indicates that the catalytic residues in the wild-type AdK serve a dual role in this enzyme’s function─one to lower the energy barrier for the phosphoryl transfer reaction and another to delay enzyme opening, maintaining it in a catalytically active, closed conformation for long enough to enable the subsequent chemical step. Our study also discovers that while each catalytic residue individually contributes to facilitating the catalysis, R36, R123, R156, R167, and D158 are organized in a tightly coordinated interaction network and collectively modulate AdK’s conformational transitions. Unlike the existing notion of product release being rate-limiting, our results suggest a mechanistic interconnection between the chemical step and the enzyme’s conformational dynamics acting as the bottleneck of the catalytic process. Our results also suggest that the enzyme’s active site has evolved to optimize the chemical reaction step while slowing down the overall opening dynamics of the enzyme.
  •  
5.
  • Leeb, Sarah, 1989- (författare)
  • How transient interactions in the crowded cytosol affect protein mobility and stability
  • 2020
  • Doktorsavhandling (övrigt vetenskapligt/konstnärligt)abstract
    • Most biochemical reactions have evolved in crowded intracellular environments. However, the complexity of intracellular environments is often neglected in structural or functional studies of proteins. In these cases, reactions involving proteins are deliberately separated from the perturbations of co-solutes in order to simplify data acquisition and interpretation. Having acquired an enormous body of knowledge under these simplified dilute-buffer conditions, methodological progress of the past two decades has made the study of proteins inside living cells increasingly accessible and concomitantly kindled an interest to investigate proteins in their native habitat. Naturally, major questions that arose were to what extent ubiquitous transient interactions alter protein structure, function and thermodynamics and, not least, what role protein surfaces and their physicochemical properties play in determining the frequency and duration of these diffusive encounters.By looking at the rotational-tumbling rates of three structurally well-characterized proteins in live cells with nuclear magnetic resonance (NMR) relaxation, we expand on previous research performed in the bacterium Escherichia coli and establish the physicochemical principles that determine diffusive interactions in the mammalian cytosol of the human ovarian cancer cell line A2780. Just as in E. coli, net charge is the dominating factor in regulating protein interactivity, albeit with the impact on rotational retardation greatly diminished. We ascribe this to the generally lower macromolecular concentrations in the eukaryotic cytosol, and put forward a hypothesis in which less stringent rules regarding protein surface decoration in eukaryotes could have facilitated the development of multi-cellular organisms. Furthermore, by developing a model where a distribution of differently sized interaction partners is taken into account when examining rotational retardation, we reconcile transverse and longitudinal in-cell relaxation with theory, and are able to estimate the populations of the bound and free form of a set of reporter proteins. Looking at the populations of bound protein instead of a mean-field rotational retardation finally allows us to re-assess the guiding rules behind diffusive cytosolic interactions. Last, we outline a putative mechanism behind the in-cell destabilization of a variant of Superoxide dismutase 1 (SOD1barrel). By mimicking generic poly-anionic intracellular co-solutes with poly-acetic acid (NaPAc1200), we identify the positively charged N-terminal portion of the unfolded form of the protein as the interaction site with the highest affinity. Further examining the unfolded ensemble of SOD1barrel with a mutationally destabilized variant reveals a compact state, that remains almost unchanged upon binding to NaPAc1200. This suggests that NaPAc1200-mediated destabilization occurs mainly through mass action, in full accord with the postulated mechanism for in-cell protein destabilization.
  •  
6.
  • Mishra, Laxmi S., 1983- (författare)
  • FtsH metalloproteases and their pseudo-proteases in the chloroplast envelope of Arabidopsis thaliana
  • 2021
  • Doktorsavhandling (övrigt vetenskapligt/konstnärligt)abstract
    • By cleaving peptide bonds, proteases either activate or degrade proteins and maintain protein quality control in response to various developmental stimuli and environmental factors. My work has focused on elucidating the role of the filamentation temperature sensitive protein H (FtsH) proteases. FtsHs belong to a membrane-embedded class of proteases found in eubacteria, animals and plants, which are located in the organelles of endosymbiosis (mitochondria and chloroplasts). They possess an AAA+ (ATPase associated with various cellular activities) and a peptidase M41 domain containing the HEXXH consensus sequence in the Zn2+ metalloprotease domain. FtsH proteases are known to form ring-like homo- or hetero-hexameric complexes. Arabidopsis thaliana, the model plant used in this study, contains seventeen AtFtsH proteases, of which twelve are presumably proteolytically active and five presumably proteolytic inactive members, known as AtFtsHi (i for inactive). In AtFtsHi members, the HEXXH motif is either deleted (AtFtsHi3) or mutated (AtFtsHi1, 2, 4, 5). Twelve AtFtsHs (AtFtsH 1, 2, 5–9, 11, 12 and AtFtsHi 1-5) are targeted to the chloroplast, whereas the remaining three (AtFtsH 3, 4 and 10) are mitochondrial. In Paper I, we demonstrate that AtFtsH12 interacts with AtFtsHi1, 2, 4, 5 to form a heteromeric complex. Abundance of these AtFtsH12-AtFtsHi complexes alters the accumulation of TIC (translocon on the inner chloroplast membrane) complexes. Transgenic mi12 (miRNA) knockdown plants that express lower amounts of AtFtsH12 displayed a pale-seedling and an aberrant chloroplast phenotype. mi12 plants displayed lowered total chlorophyll (Chla+Chlb) amount compared to wild type (WT), complementation lines and native AtFtsH12 promoter overexpressor (ox12) lines. Our biochemical studies identified drastic modifications in the total proteome of mi12 seedlings. N-terminome analyses of mi12 seedlings showed undisturbed plastidic protein maturation. In Paper II, we have shown that single mutants depleted in AtFTSHI1, 2, 4 or 5 are embryo-lethal, suggesting the pseudo-proteases to have an indispensable role in seed germination. This study further identified “weak” Atftshi1, Atftshi4, Atftshi3-1(kd) and Atftshi3-2 homozygous mutants, which develop into plants with altered photosynthetic efficiency. Field experiments were performed to determine the Darwinian fitness of these homozygous as well as heterozygous AtFtsHi mutants. The results suggested AtFtsHi enzymes to be critical during early developmental stages. A complete Atftshi3 knockdown mutant (Atftshi3-1(kd)) was identified (described in Paper III), which is not embryo-lethal and tolerates drought better than WT plants. Atftshi3-1(kd) leaves were smaller with fewer and smaller stomatal aperture. Above ground, Atftshi3-1(kd) leaves displayed lowered stomatal conductance and increased WUEi (intrinsic water-use efficiency), while below ground, the root-associated bacterial community showed a typical drought stress response. Upregulated transcripts of the ABA-responsive genes in leaves of Atftshi3-1(kd) compared to WT indicate the drought tolerance to be controlled independently of ABA. To conclude, AtFtsHi pseudo-proteases affect various stages of plant development and abiotic stress management, especially drought.
  •  
7.
  • Nam, Kwangho, et al. (författare)
  • Elucidating dynamics of Adenylate kinase from enzyme opening to ligand release
  • 2024
  • Ingår i: Journal of Chemical Information and Modeling. - : American Chemical Society (ACS). - 1549-9596 .- 1549-960X. ; 64:1, s. 150-163
  • Tidskriftsartikel (refereegranskat)abstract
    • This study explores ligand-driven conformational changes in adenylate kinase (AK), which is known for its open-to-close conformational transitions upon ligand binding and release. By utilizing string free energy simulations, we determine the free energy profiles for both enzyme opening and ligand release and compare them with profiles from the apoenzyme. Results reveal a three-step ligand release process, which initiates with the opening of the adenosine triphosphate-binding subdomain (ATP lid), followed by ligand release and concomitant opening of the adenosine monophosphate-binding subdomain (AMP lid). The ligands then transition to nonspecific positions before complete dissociation. In these processes, the first step is energetically driven by ATP lid opening, whereas the second step is driven by ATP release. In contrast, the AMP lid opening and its ligand release make minor contributions to the total free energy for enzyme opening. Regarding the ligand binding mechanism, our results suggest that AMP lid closure occurs via an induced-fit mechanism triggered by AMP binding, whereas ATP lid closure follows conformational selection. This difference in the closure mechanisms provides an explanation with implications for the debate on ligand-driven conformational changes of AK. Additionally, we determine an X-ray structure of an AK variant that exhibits significant rearrangements in the stacking of catalytic arginines, explaining its reduced catalytic activity. In the context of apoenzyme opening, the sequence of events is different. Here, the AMP lid opens first while the ATP lid remains closed, and the free energy associated with ATP lid opening varies with orientation, aligning with the reported AK opening and closing rate heterogeneity. Finally, this study, in conjunction with our previous research, provides a comprehensive view of the intricate interplay between various structural elements, ligands, and catalytic residues that collectively contribute to the robust catalytic power of the enzyme.
  •  
8.
  • Nam, Kwangho, et al. (författare)
  • Perspectives on computational enzyme modeling : from mechanisms to design and drug development
  • 2024
  • Ingår i: ACS Omega. - : American Chemical Society (ACS). - 2470-1343. ; 9:7, s. 7393-7412
  • Forskningsöversikt (refereegranskat)abstract
    • Understanding enzyme mechanisms is essential for unraveling the complex molecular machinery of life. In this review, we survey the field of computational enzymology, highlighting key principles governing enzyme mechanisms and discussing ongoing challenges and promising advances. Over the years, computer simulations have become indispensable in the study of enzyme mechanisms, with the integration of experimental and computational exploration now established as a holistic approach to gain deep insights into enzymatic catalysis. Numerous studies have demonstrated the power of computer simulations in characterizing reaction pathways, transition states, substrate selectivity, product distribution, and dynamic conformational changes for various enzymes. Nevertheless, significant challenges remain in investigating the mechanisms of complex multistep reactions, large-scale conformational changes, and allosteric regulation. Beyond mechanistic studies, computational enzyme modeling has emerged as an essential tool for computer-aided enzyme design and the rational discovery of covalent drugs for targeted therapies. Overall, enzyme design/engineering and covalent drug development can greatly benefit from our understanding of the detailed mechanisms of enzymes, such as protein dynamics, entropy contributions, and allostery, as revealed by computational studies. Such a convergence of different research approaches is expected to continue, creating synergies in enzyme research. This review, by outlining the ever-expanding field of enzyme research, aims to provide guidance for future research directions and facilitate new developments in this important and evolving field.
  •  
9.
  • Nam, Kwangho, et al. (författare)
  • Protein dynamics : the future is bright and complicated!
  • 2023
  • Ingår i: Structural Dynamics. - : American Crystallographic Association. - 2329-7778. ; 10:1
  • Tidskriftsartikel (refereegranskat)abstract
    • Biological life depends on motion, and this manifests itself in proteins that display motion over a formidable range of time scales spanning from femtoseconds vibrations of atoms at enzymatic transition states, all the way to slow domain motions occurring on micro to milliseconds. An outstanding challenge in contemporary biophysics and structural biology is a quantitative understanding of the linkages among protein structure, dynamics, and function. These linkages are becoming increasingly explorable due to conceptual and methodological advances. In this Perspective article, we will point toward future directions of the field of protein dynamics with an emphasis on enzymes. Research questions in the field are becoming increasingly complex such as the mechanistic understanding of high-order interaction networks in allosteric signal propagation through a protein matrix, or the connection between local and collective motions. In analogy to the solution to the "protein folding problem,"we argue that the way forward to understanding these and other important questions lies in the successful integration of experiment and computation, while utilizing the present rapid expansion of sequence and structure space. Looking forward, the future is bright, and we are in a period where we are on the doorstep to, at least in part, comprehend the importance of dynamics for biological function.
  •  
10.
  • Ojeda-May, Pedro, et al. (författare)
  • Dynamic Connection between Enzymatic Catalysis and Collective Protein Motions
  • 2021
  • Ingår i: Biochemistry. - : American Chemical Society (ACS). - 0006-2960 .- 1520-4995. ; 60:28, s. 2246-2258
  • Tidskriftsartikel (refereegranskat)abstract
    • Enzymes employ a wide range of protein motions to achieve efficient catalysis of chemical reactions. While the role of collective protein motions in substrate binding, product release, and regulation of enzymatic activity is generally understood, their roles in catalytic steps per se remain uncertain. Here, molecular dynamics simulations, enzyme kinetics, X-ray crystallography, and nuclear magnetic resonance spectroscopy are combined to elucidate the catalytic mechanism of adenylate kinase and to delineate the roles of catalytic residues in catalysis and the conformational change in the enzyme. This study reveals that the motions in the active site, which occur on a time scale of picoseconds to nanoseconds, link the catalytic reaction to the slow conformational dynamics of the enzyme by modulating the free energy landscapes of subdomain motions. In particular, substantial conformational rearrangement occurs in the active site following the catalytic reaction. This rearrangement not only affects the reaction barrier but also promotes a more open conformation of the enzyme after the reaction, which then results in an accelerated opening of the enzyme compared to that of the reactant state. The results illustrate a linkage between enzymatic catalysis and collective protein motions, whereby the disparate time scales between the two processes are bridged by a cascade of intermediate-scale motion of catalytic residues modulating the free energy landscapes of the catalytic and conformational change processes.
  •  
11.
  • Patrick, Joan, 1987- (författare)
  • Functional dynamics of glycosyltransferases : Solution-state NMR studies of peripheral membrane proteins involved in glycolipid biosynthesis in bacteria
  • 2023
  • Doktorsavhandling (övrigt vetenskapligt/konstnärligt)abstract
    • Antibiotic resistance is an existential threat enabled by bacterial adaptation and fuelled by inappropriate use of medication. The ensuing shortage of effective treatments has led to a rise in deaths linked to resistant bacterial pathogens. Disrupting cell wall biosynthesis can undermine bacterial defences, so new insights into the dynamic function of the enzymes involved could facilitate new therapies.Glycosyltransferases (GTs), enzymes forming glycosidic bonds, build molecules by transferring a sugar group from a donor to an acceptor. In Gram-negative bacteria, an enzymatic assembly line constructs membrane-anchored virulence factor lipopolysaccharide (LPS), which dominates the outer membrane, forming a protective layer. In mycobacteria, phosphatidyl-myo-inositol mannosides (PIMs) ensure the stability and impermeability of the inner membrane, and are constructed by a similar array of enzymes. In this thesis, bacterial GTs that work at the cytoplasmic leaflet of the inner membrane were investigated.PimA is an essential mycobacterial enzyme involved in constructing PIMs. It exists in multiple conformations, implying that it undergoes complex conformational changes, including a fold-switch. Associated motions were characterised with NMR dynamics experiments, revealing donor substrate-dependent population shifts and dynamic changes. At least four different states co-exist in solution, regardless of whether or not the enzyme is bound to substrate.WaaG performs one step in the biosynthesis of LPS in bacteria including E. coli and P.  aeruginosa. As it is not an essential enzyme, EcWaaG-deficient E. coli survive, but are more vulnerable to antibiotics. 19F NMR was employed to detect conformational and dynamic changes in EcWaaG. Upon interaction with bicelle-bound lipids and its donor substrate, UDP-glucose, EcWaaG was shown to experience a dynamic change, while a part of the protein was shown to experience slow conformational change. Hydrolysis of the donor substrate was quantified using 31P NMR. WaaG from P. aeruginosa was also investigated, focusing on the functional mechanism. NMR experiments determined that only UDP-GalNAc was hydrolysed by PaWaaG. When the active site was mutated to resemble that of EcWaaG, it was shown by 31P NMR that the mutated enzyme instead hydrolysed the donor substrate of EcWaaG, UDP-glucose. However, PaWaaG cannot be substituted for EcWaaG in vivo, underlining the importance of the interaction with the lipid-bound acceptor substrate.Both WaaG and PimA function adjacent to membrane. As larger objects give rise to broader signals, solution-state NMR imposes constraints on the detection of protein-lipid interactions. Small membrane mimetics like lipid bicelles can be used to mimic a membrane, but while they permit detection of effects on protein signals, detecting the effects on lipid signals requires further optimization, as further concentration-dependent challenges arise in multi-component experiments. Thus, lipid dynamics in bicelles designed to exist at low concentrations were characterized using 1H and 13C NMR. Upon binding spin-labelled PimA, paramagnetic relaxation enhancement of the lipids could be observed.This thesis thus widens the toolkit available to study membrane-associated proteins. It demonstrates that, far from being static structures, biomolecules like lipids and proteins are highly flexible objects whose function can only be understood if dynamics are taken into account.
  •  
12.
  • Phoeurk, Chanrith, et al. (författare)
  • Milligram scale expression, refolding, and purification of Bombyx mori cocoonase using a recombinant E. coli system
  • 2021
  • Ingår i: Protein Expression and Purification. - : Elsevier. - 1046-5928 .- 1096-0279. ; 186
  • Tidskriftsartikel (refereegranskat)abstract
    • Silk is one of the most versatile biomaterials with signature properties of outstanding mechanical strength and flexibility. A potential avenue for developing more environmentally friendly silk production is to make use of the silk moth (Bombyx mori) cocoonase, this will at the same time increase the possibility for using the byproduct, sericin, as a raw material for other applications. Cocoonase is a serine protease utilized by the silk moth to soften the cocoon to enable its escape after completed metamorphosis. Cocoonase selectively degrades the glue protein of the cocoon, sericin, without affecting the silk-fiber made of the protein fibroin. Cocoonase can be recombinantly produced in E. coli, however, it is exclusively found as insoluble inclusion bodies. To solve this problem and to be able to utilize the benefits associated with an E. coli based expression system, we have developed a protocol that enables the production of soluble and functional protease in the milligram/liter scale. The core of the protocol is refolding of the protein in a buffer with a redox potential that is optimized for formation of native and intramolecular di-sulfide bridges. The redox potential was balanced with defined concentrations of reduced and oxidized glutathione. This E. coli based production protocol will, in addition to structure determination, also enable modification of cocoonase both in terms of catalytic function and stability. These factors will be valuable components in the development of alternate silk production methodology.
  •  
13.
  • Ravishankar, Harsha, 1987- (författare)
  • Characterization of ATP-dependent protein dynamics under native-like conditions
  • 2020
  • Doktorsavhandling (övrigt vetenskapligt/konstnärligt)abstract
    • Proteins are biological macromolecules capable of accelerating biochemical reactions. To accomplish this, proteins undergo changes in their molecular structure. Advances in structural biology have resulted in ever-increasing numbers of high-resolution protein structures. However, the majority of transient intermediate states will not amendable with traditional structural determination methods. Therefore, understanding how protein structural changes are correlated with the biological function necessitates development of methods that characterize the reaction in the native environment. P-type ATPase membrane transporters and the adenylate kinase (AK) are two ATP-dependent proteins that undergo extensive conformational change in their reaction cycles. While P-type ATPases maintain concentration gradients of ions across the cellular membranes, AK regulates cellular energy homeostasis by catalyzing interconversion of nucleotides. Resolving P-type ATPase and AK temporal and spatial structural dynamics is crucial to understand how these proteins are triggered by ATP for functionality. To pave way for time-resolved X-ray characterization of ATP-dependent conformational changes, it was necessary to identify optimal conditions for triggering protein reactions. Therefore, time-dependent Fourier-Transform Infra-Red (FTIR) spectroscopy of a recombinant Zn2+-transporting ATPase was used to optimize activation by photolysis of caged ATP. These conditions were then used to track structural dynamics of the Ca2+-transporting sarcoplasmic reticulum ATPase (SERCA) in skeletal muscle native membranes. Fast single-cycle dynamics were registered with the formation of an intermediate state at 1.5 ms followed by steady-state accumulation at 13 ms. The molecular dynamic (MD)-based structural refinement procedure showed that the 13-ms transient intermediate represented an ADP-sensitive, phosphorylated Ca2+-bound E1 state (Ca2E1P), with a domain arrangement that has so far eluded structural characterization.MD simulations of the identified SERCA transient intermediates further finetuned their positions in the reaction cycle. The 1.5-ms state was assigned to an ATP-bound state prior to phosphorylation, while the 13-ms state was stable in its Ca2E1P conformation. Because the simulations were performed in multicomponent lipid bilayers mimicking the native membrane, specific state-dependent lipid interactions were also identified. Finally, the wider applicability of the time-resolved X-ray method to study ATP-dependent protein dynamics was demonstrated by tracking AK structural dynamics. A transient intermediate at 5 ms was identified that showed closing of the ATP-binding domain prior to the NMP-binding domain, in the presence of both ATP and AMP substrates. This study provided conclusive experimental proof of the relative ordering of domain closure that had been predicted by several computational studies.In summary, the work presented in this thesis has contributed to developing the time-resolved X-ray method to study the structural dynamics of ATP-dependent proteins.
  •  
14.
  •  
15.
  • Rogne, Per, et al. (författare)
  • Structural Basis for GTP versus ATP Selectivity in the NMP Kinase AK3
  • 2020
  • Ingår i: Biochemistry. - : American Chemical Society (ACS). - 0006-2960 .- 1520-4995. ; 59:38, s. 3570-3581
  • Tidskriftsartikel (refereegranskat)abstract
    • ATP and GTP are exceptionally important molecules in biology with multiple, and often discrete, functions. Therefore, enzymes that bind to either of them must develop robust mechanisms to selectively utilize one or the other. Here, this specific problem is addressed by molecular studies of the human NMP kinase AK3, which uses GTP to phosphorylate AMP. AK3 plays an important role in the citric acid cycle, where it is responsible for GTP/GDP recycling. By combining a structural biology approach with functional experiments, we present a comprehensive structural and mechanistic understanding of the enzyme. We discovered that AK3 functions by recruitment of GTP to the active site, while ATP is rejected and nonproductively bound to the AMP binding site. Consequently, ATP acts as an inhibitor with respect to GTP and AMP. The overall features with specific recognition of the correct substrate and nonproductive binding by the incorrect substrate bear a strong similarity to previous findings for the ATP specific NMP kinase adenylate kinase. Taken together, we are now able to provide the fundamental principles for GTP and ATP selectivity in the large NMP kinase family. As a side-result originating from nonlinearity of chemical shifts in GTP and ATP titrations, we find that protein surfaces offer a general and weak binding affinity for both GTP and ATP. These nonspecific interactions likely act to lower the available intracellular GTP and ATP concentrations and may have driven evolution of the Michaelis constants of NMP kinases accordingly.
  •  
16.
  • Tischlik, Sonja, et al. (författare)
  • Insights into Enzymatic Catalysis from Binding and Hydrolysis of Diadenosine Tetraphosphate by E. coli Adenylate Kinase
  • 2023
  • Ingår i: Biochemistry. - : American Chemical Society (ACS). - 0006-2960 .- 1520-4995. ; 62:15, s. 2238-2243
  • Tidskriftsartikel (refereegranskat)abstract
    • Adenylate kinases play a crucial role in cellular energy homeostasis through the interconversion of ATP, AMP, and ADP in all living organisms. Here, we explore how adenylate kinase (AdK) from Escherichia coli interacts with diadenosine tetraphosphate (AP4A), a putative alarmone associated with transcriptional regulation, stress, and DNA damage response. From a combination of EPR and NMR spectroscopy together with X-ray crystallography, we found that AdK interacts with AP4A with two distinct modes that occur on disparate time scales. First, AdK dynamically interconverts between open and closed states with equal weights in the presence of AP4A. On a much slower time scale, AdK hydrolyses AP4A, and we suggest that the dynamically accessed substrate-bound open AdK conformation enables this hydrolytic activity. The partitioning of the enzyme into open and closed states is discussed in relation to a recently proposed linkage between active site dynamics and collective conformational dynamics.
  •  
17.
  • Verma, Apoorv, et al. (författare)
  • Insights into the evolution of enzymatic specificity and catalysis : from Asgard archaea to human adenylate kinases
  • 2022
  • Ingår i: Science Advances. - : American Association for the Advancement of Science (AAAS). - 2375-2548. ; 8:44
  • Tidskriftsartikel (refereegranskat)abstract
    • Enzymatic catalysis is critically dependent on selectivity, active site architecture, and dynamics. To contribute insights into the interplay of these properties, we established an approach with NMR, crystallography, and MD simulations focused on the ubiquitous phosphotransferase adenylate kinase (AK) isolated from Odinarchaeota (OdinAK). Odinarchaeota belongs to the Asgard archaeal phylum that is believed to be the closest known ancestor to eukaryotes. We show that OdinAK is a hyperthermophilic trimer that, contrary to other AK family members, can use all NTPs for its phosphorylation reaction. Crystallographic structures of OdinAK-NTP complexes revealed a universal NTP-binding motif, while 19F NMR experiments uncovered a conserved and rate-limiting dynamic signature. As a consequence of trimerization, the active site of OdinAK was found to be lacking a critical catalytic residue and is therefore considered to be "atypical." On the basis of discovered relationships with human monomeric homologs, our findings are discussed in terms of evolution of enzymatic substrate specificity and cold adaptation.
  •  
18.
  • Vrhovac, Lidija, 1994- (författare)
  • Structural characterization of Deinococcus radiodurans phytochrome in solution
  • 2024
  • Doktorsavhandling (övrigt vetenskapligt/konstnärligt)abstract
    • Phytochromes are red/far-red photoreceptors which control a wide spectrum of biological processes in plants, fungi, and bacteria. Although phytochromes have been extensively studied, their mechanism of action still remains elusive. The signaling mechanism suggested by crystal structures involves refolding of the so-called PHY tongue. However, currently, the involvement of the other two prominent structural elements, the so-called helical spine and a knot in the peptide chain, remains unclear.Here, the first backbone assignment of the photosensory module of D. radiodurans phytochrome is presented. To achieve a higher degree of the backbone assignment and thus gain further knowledge on the conformational changes in the chromophore binding domain, an efficient method for refolding of the CBDPHY phytochrome fragment was developed. While further NMR measurements on the refolded phytochrome are needed, preliminary results already show the value of the extended backbone assignment for the future structural studies. Previously unreported changes in the knot region of the photosensory module of D. radiodurans phytochrome were captured by solution NMR. All NMR observables suggest photoinduced structural changes in the aforementioned region, implying that the signal is carried from the chromophore to the helical spine, and through it, to the PHY domain and the output module. Furthermore, a study of the region near the bottom of the helical spine has been conducted. Using several sets of the residual dipolar coupling (RDC) measurements, together with the molecular dynamics (MD) simulations, we gained a better understanding of the network of interactions spanning from the chromophore to the dimer contact surface.Additionally, a procedure for structural analysis of nanoscale particles at XFELs using angular crosscorrelations is outlined here. This approach was applied to the scattering data of ideal icosahedral particles, a phytochrome and the human pre-ribosomal (pre-40S) particle. Condor was used to predict X-ray scattering amplitudes of these particles for customized experimental designs. Angular correlations can be accurately extracted from multiple-particle fluctuation X-ray scattering experiments. We concluded that angular cross-correlation functions (CCFs) preserve a substantial amount of structural information which enables the observation of structural features of particles at the nanometer scale. Consequently, correlation maps could be useful to follow fast dynamical changes in the structure, for instance, as a response to external stimuli.
  •  
19.
  •  
Skapa referenser, mejla, bekava och länka
  • Resultat 1-19 av 19
Typ av publikation
tidskriftsartikel (12)
doktorsavhandling (6)
forskningsöversikt (1)
Typ av innehåll
refereegranskat (11)
övrigt vetenskapligt/konstnärligt (8)
Författare/redaktör
Wolf-Watz, Magnus, 1 ... (13)
Nam, Kwangho (7)
Rogne, Per (7)
Sauer, Uwe H. (4)
Grundström, Christin (4)
Ul Mushtaq, Ameeq (4)
visa fler...
Andersson, Magnus (3)
Dulko-Smith, Beata (3)
Sauer-Eriksson, A El ... (3)
Wolf-Watz, Magnus, P ... (3)
Goodman, Jack (3)
Wulff, Michael (2)
Hedberg, Christian (2)
Backman, Lars, 1951- (2)
Wolf-Watz, Magnus, P ... (2)
Verma, Apoorv (2)
Nors Pedersen, Marti ... (2)
Levantino, Matteo (2)
Ravishankar, Harsha (2)
Hober, Sophia, Profe ... (1)
Ådén, Jörgen, 1980- (1)
Mäler, Lena, Profess ... (1)
Funk, Christiane, Pr ... (1)
Ojeda-May, Pedro (1)
Sauer-Eriksson, Elis ... (1)
Andersson, Magnus, D ... (1)
Ojeda-May, Pedro, Ap ... (1)
Jönsson, Malin (1)
Sparrman, Tobias (1)
Berntsson, Ronnie (1)
Oliveberg, Mikael, P ... (1)
Vrhovac, Lidija, 199 ... (1)
Duelli, Annette (1)
Shao, Yihan (1)
Rosselin, Marie (1)
Orädd, Fredrik, 1994 ... (1)
Oelker, Melanie (1)
Leeb, Sarah, 1989- (1)
Mishra, Laxmi S., 19 ... (1)
de Vitry, Catherine, ... (1)
Arattu Thodika, Abdu ... (1)
Major, Dan T. (1)
Ovchinnikov, Victor (1)
Orädd, Fredrik (1)
Cammarata, Marco, Dr ... (1)
Patrick, Joan, 1987- (1)
Phoeurk, Chanrith (1)
Ravishankar, Harsha, ... (1)
Wolf-Watz, Hans, Pro ... (1)
Arleth, Lise, Profes ... (1)
visa färre...
Lärosäte
Umeå universitet (16)
Stockholms universitet (2)
Kungliga Tekniska Högskolan (1)
Uppsala universitet (1)
Språk
Engelska (19)
Forskningsämne (UKÄ/SCB)
Naturvetenskap (19)
Teknik (1)
Lantbruksvetenskap (1)

År

Kungliga biblioteket hanterar dina personuppgifter i enlighet med EU:s dataskyddsförordning (2018), GDPR. Läs mer om hur det funkar här.
Så här hanterar KB dina uppgifter vid användning av denna tjänst.

 
pil uppåt Stäng

Kopiera och spara länken för att återkomma till aktuell vy