SwePub
Sök i SwePub databas

  Utökad sökning

Träfflista för sökning "WFRF:(Wu Yuntao) srt2:(2024)"

Sökning: WFRF:(Wu Yuntao) > (2024)

  • Resultat 1-2 av 2
Sortera/gruppera träfflistan
   
NumreringReferensOmslagsbildHitta
1.
  • Wu, Lele, et al. (författare)
  • Organic matter composition and stability in estuarine wetlands depending on soil salinity
  • 2024
  • Ingår i: Science of the Total Environment. - : Elsevier. - 0048-9697 .- 1879-1026. ; 945
  • Tidskriftsartikel (refereegranskat)abstract
    • Coastal wetlands are key players in mitigating global climate change by sequestering soil organic matter. Soil organic matter consists of less stable particulate organic matter (POM) and more stable mineral -associated organic matter (MAOM). The distribution and drivers of MAOM and POM in coastal wetlands have received little attention, despite the processes and mechanisms differ from that in the upland soils. We explored the distribution of POM and MAOM, their contributions to SOM, and the controlling factors along a salinity gradient in an estuarine wetland. In the estuarine wetland, POM C and N were influenced by soil depth and vegetation type, whereas MAOM C and N were influenced only by vegetation type. In the estuarine wetland, SOM was predominantly in the form of MAOM ( > 70 %) and increased with salinity (70 % -76 %), leading to long-term C sequestration. Both POM and MAOM increased with SOM, and the increase rate of POM was higher than that of MAOM. Aboveground plant biomass decreased with increasing salinity, resulted in a decrease in POM C (46 % - 81 %) and N (52 % -82 %) pools. As the mineral amount and activity, and microbial biomass decreased, the MAOM C (2.5 % -64 %) and N pool (8.6 % -59 %) decreased with salinity. When evaluating POM, the most influential factors were microbial biomass carbon (MBC) and dissolved organic carbon (DOC). Key parameters, including MBC, DOC, soil salinity, soil water content, aboveground plant biomass, mineral content and activity, and bulk density, were identified as influencing factors for both MAOM abundance. Soil water content not only directly controlled MAOM, but together with salinity also indirectly regulated POM and MAOM by controlling microbial biomass and aboveground plant biomass. Our findings have important implications for improving the accumulation and increased stability of soil organic matter in coastal wetlands, considering the global sea level rise and increased frequency of inundation.
  •  
2.
  • Wu, Yuntao, et al. (författare)
  • Silicon promotes biomass accumulation in Phragmites australis under waterlogged conditions in coastal wetland
  • 2024
  • Ingår i: Plant and Soil. - : Springer Nature. - 0032-079X .- 1573-5036.
  • Tidskriftsartikel (refereegranskat)abstract
    • Aims Previous studies have shown that silicon (Si) can affect plant growth and yield by regulating the availability of other nutrients. However, the mechanisms by which Si affects plant biomass accumulation in coastal wetlands are not well explored. Methods We conducted a sampling campaign across the whole growing season of Phragmites australis under waterlogging and drought conditions in coastal wetland, and quantified the effects of Si availability on biomass accumulation. Results Compared with drought condition, the waterlogged condition improved the utilization efficiency of nitrogen (N) and phosphorus (P) of P. australis regulated by higher Si contents. Meanwhile, the increased Si contents promoted the utilization of N and P in leaf, suggesting that the increase in Si contents optimizes the photosynthetic process. Lignin contents in P. australis decreased with the increasing Si contents, which confirmed that Si can replace structural carbon components. In addition, principal component analysis (PCA) showed aboveground biomass accumulation of P. australis was synchronized with Si accumulation, indicating that Si was a beneficial element to promote biomass accumulation. Conclusions Our study implies that increasing Si availability is conducive to biomass accumulation of P. australis in waterlogged wetlands, which will provide important scientific references for the management of coastal wetland ecosystem and the increase of global 'blue carbon' sequestration.
  •  
Skapa referenser, mejla, bekava och länka
  • Resultat 1-2 av 2

Kungliga biblioteket hanterar dina personuppgifter i enlighet med EU:s dataskyddsförordning (2018), GDPR. Läs mer om hur det funkar här.
Så här hanterar KB dina uppgifter vid användning av denna tjänst.

 
pil uppåt Stäng

Kopiera och spara länken för att återkomma till aktuell vy