SwePub
Sök i SwePub databas

  Utökad sökning

Träfflista för sökning "WFRF:(Yang NI) srt2:(2015-2019)"

Sökning: WFRF:(Yang NI) > (2015-2019)

  • Resultat 1-17 av 17
Sortera/gruppera träfflistan
   
NumreringReferensOmslagsbildHitta
1.
  • 2019
  • Tidskriftsartikel (refereegranskat)
  •  
2.
  • Kristanl, Matej, et al. (författare)
  • The Seventh Visual Object Tracking VOT2019 Challenge Results
  • 2019
  • Ingår i: 2019 IEEE/CVF INTERNATIONAL CONFERENCE ON COMPUTER VISION WORKSHOPS (ICCVW). - : IEEE COMPUTER SOC. - 9781728150239 ; , s. 2206-2241
  • Konferensbidrag (refereegranskat)abstract
    • The Visual Object Tracking challenge VOT2019 is the seventh annual tracker benchmarking activity organized by the VOT initiative. Results of 81 trackers are presented; many are state-of-the-art trackers published at major computer vision conferences or in journals in the recent years. The evaluation included the standard VOT and other popular methodologies for short-term tracking analysis as well as the standard VOT methodology for long-term tracking analysis. The VOT2019 challenge was composed of five challenges focusing on different tracking domains: (i) VOT-ST2019 challenge focused on short-term tracking in RGB, (ii) VOT-RT2019 challenge focused on "real-time" short-term tracking in RGB, (iii) VOT-LT2019 focused on long-term tracking namely coping with target disappearance and reappearance. Two new challenges have been introduced: (iv) VOT-RGBT2019 challenge focused on short-term tracking in RGB and thermal imagery and (v) VOT-RGBD2019 challenge focused on long-term tracking in RGB and depth imagery. The VOT-ST2019, VOT-RT2019 and VOT-LT2019 datasets were refreshed while new datasets were introduced for VOT-RGBT2019 and VOT-RGBD2019. The VOT toolkit has been updated to support both standard short-term, long-term tracking and tracking with multi-channel imagery. Performance of the tested trackers typically by far exceeds standard baselines. The source code for most of the trackers is publicly available from the VOT page. The dataset, the evaluation kit and the results are publicly available at the challenge website(1).
  •  
3.
  • 2017
  • swepub:Mat__t
  •  
4.
  •  
5.
  •  
6.
  •  
7.
  •  
8.
  •  
9.
  •  
10.
  •  
11.
  • Deng, Kai, et al. (författare)
  • Small dynamic mountainous rivers in Taiwan exhibit large sedimentary geochemical and provenance heterogeneity over multi-spatial scales
  • 2019
  • Ingår i: Earth and Planetary Science Letters. - : Elsevier BV. - 0012-821X .- 1385-013X. ; 505, s. 96-109
  • Tidskriftsartikel (refereegranskat)abstract
    • Taiwan rivers are characterized by extremely rapid mass wasting and sediment transfer due to active tectonics and frequent typhoons. Various methods have been applied to constrain processes affecting their sediment source-to-sink routing. In most cases, the sediment at the outlet is considered to be a representative average of the whole upstream basin due to the short sediment routes (<200 km). However, this assumption may be inappropriate because huge compositional heterogeneity can exist even within such small dynamic river systems. To reveal their intra-station and basin-wide geochemical heterogeneity, we collected sediment samples along the Zhuoshui and Liwu Rivers in Taiwan. Multiple samples deposited in different locations or with different grain-sizes were collected at each station, and the <63 μm fractions were measured for their elemental and Sr–Nd isotopic compositions. Elemental ratios and dimension-reducing technique were firstly applied to discriminate the sediment provenances. They show that the large elemental heterogeneity exists between samples at the same station and also between stations along each river, explainable by variable sediment mixing and local lithological heterogeneity. When combining our Sr–Nd isotopic data with literature data from Taiwan rivers, five discrete clusters of river sediments can be distinguished, reflecting the inter-catchment heterogeneity of sediment provenance in Taiwan Island. We also applied a Sr–Nd isotopic mixing model coupled with Monte-Carlo simulations to quantify the provenance heterogeneity in both rivers. The sediment contribution of the Western Foothills/Tailuko Belt to the Zhuoshui/Liwu downstream can vary by a factor of ∼2 between sediment samples that were considered as spatial or temporal replicates. Combined with field in-situ observations, we propose that fast-changing sediment transport modes cause the provenance heterogeneity in small dynamic mountainous rivers attacked by frequent heavy storms or typhoons. Sediments transported during different events and with different provenances can be preserved at each station, which leads to the intra-station and basin-wide geochemical heterogeneity. This study shows that “small” dynamic mountainous rivers can exhibit “large” geochemical and provenance heterogeneity over multi-spatial scales, and thus the common assumption that “let nature do the averaging” should be treated cautiously in this kind of river. Therefore, we propose several effective sediment sampling approaches on small mountainous rivers for reference. Future studies relying on detrital sediments, e.g. applying cosmogenic nuclides or Li isotopes, should also be aware of the heterogeneous nature in small mountainous rivers, because fast-changing provenances can simultaneously bias the weathering and erosion signals and lead to unrepresentative results.
  •  
12.
  • Ni, Xiangyin, et al. (författare)
  • Formation of forest gaps accelerates C, N and P release from foliar litter during 4 years of decomposition in an alpine forest
  • 2018
  • Ingår i: Biogeochemistry. - : Springer Science and Business Media LLC. - 0168-2563 .- 1573-515X. ; 139:3, s. 321-335
  • Tidskriftsartikel (refereegranskat)abstract
    • Relative to areas under canopy, the soils in forest gaps receive more irradiance and rainfall (snowfall); this change in microclimate induced by forest gaps may influence the release of carbon (C) and nutrients during litter decomposition. However, great uncertainty remains about the effects of forest gaps on litter decomposition. In this study, we incubated foliar litters from six tree and shrub species in forest gaps and canopy plots and measured the release of C, nitrogen (N) and phosphorus (P) in different snow cover periods in an alpine forest from 2012 to 2016. We found that N was retained by 24–46% but that P was immediately released during an early stage of decomposition. However, forest gaps decreased litter N retention, resulting in more N and P being released from decomposing litters for certain species (i.e., larch, birch and willow litters). Moreover, the release of C and nutrients during litter decomposition stimulated by forest gaps was primarily driven by warmer soil temperature in this high-altitude forest. We conclude that gap formation during forest regeneration may accelerate C turnover and nutrient cycling and that this stimulation might be regulated by the litter species in this seasonally snow-covered forest. © 2018, Springer Nature Switzerland AG.
  •  
13.
  • Qi, Xiaoying, et al. (författare)
  • High Throughput, Absolute Determination of the Content of a Selected Protein at Tissue Levels Using Quantitative Dot Blot Analysis (QDB)
  • 2018
  • Ingår i: Journal of Visualized Experiments. - : MyJove Corporation. - 1940-087X. ; :138
  • Tidskriftsartikel (refereegranskat)abstract
    • Lacking a convenient, quantitative, high throughput immunoblot method for absolute determination of the content of a specific protein at cellular and tissue level significantly hampers the progress in proteomic research. Results derived from currently available immunoblot techniques are also relative, preventing any efforts to combine independent studies with a large-scale analysis of protein samples. In this study, we demonstrate the process of quantitative dot blot analysis (QDB) to achieve absolute quantification in a high throughput format. Using a commercially available protein standard, we are able to determine the absolute content of capping actin protein, gelsolin-like (CAPG) in protein samples prepared from three different mouse tissues (kidney, spleen, and prostate) together with a detailed explanation of the experimental details. We propose the QDB analysis as a convenient, quantitative, high throughput immunoblot method of absolute quantification of individual proteins at the cellular and tissue level. This method will substantially aid biomarker validation and pathway verification in various areas of biological and biomedical research.
  •  
14.
  •  
15.
  • Zhang, H., et al. (författare)
  • Registration of Multimodal Remote Sensing Image Based on Deep Fully Convolutional Neural Network
  • 2019
  • Ingår i: IEEE Journal of Selected Topics in Applied Earth Observations and Remote Sensing. - : Institute of Electrical and Electronics Engineers (IEEE). - 1939-1404 .- 2151-1535. ; 12:8, s. 3028-3042
  • Tidskriftsartikel (refereegranskat)abstract
    • Multimodal image registration is the fundamental technique for scene analysis with series remote sensing images of different spectrum region. Due to the highly nonlinear radiometric relationship, it is quite challenging to find common features between images of different modal types. This paper resorts to the deep neural network, and tries to learn descriptors for multimodal image patch matching, which is the key issue of image registration. A Siamese fully convolutional network is set up and trained with a novel loss function, which adopts the strategy of maximizing the feature distance between positive and hard negative samples. The two branches of the Siamese network are connected by the convolutional operation, resulting in the similarity score between the two input image patches. The similarity score value is used, not only for correspondence point location, but also for outlier identification. A generalized workflow for deep feature based multimodal RS image registration is constructed, including the training data curation, candidate feature point generation, and outlier removal. The proposed network is tested on a variety of optical, near infrared, thermal infrared, SAR, and map images. Experiment results verify the superiority over other state-of-the-art approaches.
  •  
16.
  •  
17.
  • Zhou, Yang, et al. (författare)
  • Benzylamine-Treated Wide-Bandgap Perovskite with High Thermal-Photostability and Photovoltaic Performance
  • 2017
  • Ingår i: Advanced Energy Materials. - : WILEY-V C H VERLAG GMBH. - 1614-6832 .- 1614-6840. ; 7:22
  • Tidskriftsartikel (refereegranskat)abstract
    • Mixed iodide-bromide organolead perovskites with a bandgap of 1.70-1.80 eV have great potential to boost the efficiency of current silicon solar cells by forming a perovskite-silicon tandem structure. Yet, the stability of the perovskites under various application conditions, and in particular combined light and heat stress, is not well studied. Here, FA(0.15)Cs(0.85)Pb(I0.73Br0.27)(3), with an optical bandgap of approximate to 1.72 eV, is used as a model system to investigate the thermal-photostability of wide-bandgap mixed halide perovskites. It is found that the concerted effect of heat and light can induce both phase segregation and decomposition in a pristine perovskite film. On the other hand, through a postdeposition film treatment with benzylamine (BA) molecules, the highly defective regions (e.g., film surface and grain boundaries) of the film can be well passivated, thus preventing the progression of decomposition or phase segregation in the film. Besides the stability improvement, the BA-modified perovskite solar cells also exhibit excellent photovoltaic performance, with the champion device reaching a power conversion efficiency of 18.1%, a stabilized power output efficiency of 17.1% and an open-circuit voltage (V-oc) of 1.24 V.
  •  
Skapa referenser, mejla, bekava och länka
  • Resultat 1-17 av 17

Kungliga biblioteket hanterar dina personuppgifter i enlighet med EU:s dataskyddsförordning (2018), GDPR. Läs mer om hur det funkar här.
Så här hanterar KB dina uppgifter vid användning av denna tjänst.

 
pil uppåt Stäng

Kopiera och spara länken för att återkomma till aktuell vy