SwePub
Sök i SwePub databas

  Utökad sökning

Träfflista för sökning "WFRF:(Yoccoz Nigel G.) srt2:(2010-2014)"

Sökning: WFRF:(Yoccoz Nigel G.) > (2010-2014)

  • Resultat 1-2 av 2
Sortera/gruppera träfflistan
   
NumreringReferensOmslagsbildHitta
1.
  • Angerbjörn, Anders, et al. (författare)
  • Carnivore conservation in practice : replicatedmanagement actions on a large spatial scale
  • 2013
  • Ingår i: Journal of Applied Ecology. - : Wiley. - 0021-8901 .- 1365-2664. ; 50:1, s. 59-67
  • Tidskriftsartikel (refereegranskat)abstract
    • More than a quarter of the world’s carnivores are threatened, often due to multiple andcomplex causes. Considerable research efforts are devoted to resolving the mechanisms behindthese threats in order to provide a basis for relevant conservation actions. However, evenwhen the underlying mechanisms are known, specific actions aimed at direct support for carnivoresare difficult to implement and evaluate at efficient spatial and temporal scales.2. We report on a 30-year inventory of the critically endangered Fennoscandian arctic foxVulpes lagopus L., including yearly surveys of 600 fox dens covering 21 000 km2. These surveysshowed that the population was close to extinction in 2000, with 40–60 adult animalsleft. However, the population subsequently showed a fourfold increase in size.3. During this time period, conservation actions through supplementary feeding and predatorremoval were implemented in several regions across Scandinavia, encompassing 79% of thearea. To evaluate these actions, we examined the effect of supplemental winter feeding andred fox control applied at different intensities in 10 regions. A path analysis indicated that47% of the explained variation in population productivity could be attributed to lemmingabundance, whereas winter feeding had a 29% effect and red fox control a 20% effect.4. This confirms that arctic foxes are highly dependent on lemming population fluctuationsbut also shows that red foxes severely impact the viability of arctic foxes. This study also highlightsthe importance of implementing conservation actions on extensive spatial and temporalscales, with geographically dispersed actions to scientifically evaluate the effects. We note thatpopulation recovery was only seen in regions with a high intensity of management actions.5. Synthesis and applications. The present study demonstrates that carnivore populationdeclines may be reversed through extensive actions that target specific threats. Fennoscandianarctic fox is still endangered, due to low population connectivity and expected climate impactson the distribution and dynamics of lemmings and red foxes. Climate warming is expected tocontribute to both more irregular lemming dynamics and red fox appearance in tundra areas;however, the effects of climate change can be mitigated through intensive managementactions such as supplemental feeding and red fox control.
  •  
2.
  • Henden, John-André, et al. (författare)
  • Strength of asymmetric competition between predators in food webs ruled by fluctuating prey : the case of foxes in tundra
  • 2010
  • Ingår i: Oikos. - : Wiley. - 0030-1299 .- 1600-0706. ; 119:1, s. 27-34
  • Tidskriftsartikel (refereegranskat)abstract
    • In food webs heavily influenced by multi-annual population fluctuations of key herbivores, predator species may differ in their functional and numerical responses as well as their competitive ability. Focusing on red and arctic fox in tundra with cyclic populations of rodents as key prey, we develop a model to predict how population dynamics of a dominant and versatile predator (red fox) impacted long-term growth rate of a subdominant and less versatile predator (arctic fox). We compare three realistic scenarios of red fox performance: (1) a numerical response scenario where red fox acted as a resident rodent specialist exhibiting population cycles lagging one year after the rodent cycle, (2) an aggregative response scenario where red fox shifted between tundra and a nearby ecosystem (i.e. boreal forest) so as to track rodent peaks in tundra without delay, and (3) a constant subsidy scenario in which the red fox population was stabilized at the same mean density as in the other two scenarios. For all three scenarios it is assumed that the arctic fox responded numerically as a rodent specialist and that the mechanisms of competition is of a interference type for space, in which the arctic fox is excluded from the most resource rich patches in tundra. Arctic fox is impacted most by the constant subsidy scenario and least by the numerical response scenario. The differential effects of the scenarios stemmed from cyclic phase-dependent sensitivity to competition mediated by changes in temporal mean and variance of available prey to the subdominant predator. A general implication from our result is that external resource subsidies (prey or habitats), monopolized by the dominant competitor, can significantly reduce the likelihood for co-existence within the predator guild. In terms of conservation of vulnerable arctic fox populations this means that the likelihood of extinction increases with increasing amount of subsidies (e.g. carcasses of large herbivores or marine resources) in tundra and nearby forest areas, since it will act to both increase and stabilize populations of red fox.
  •  
Skapa referenser, mejla, bekava och länka
  • Resultat 1-2 av 2

Kungliga biblioteket hanterar dina personuppgifter i enlighet med EU:s dataskyddsförordning (2018), GDPR. Läs mer om hur det funkar här.
Så här hanterar KB dina uppgifter vid användning av denna tjänst.

 
pil uppåt Stäng

Kopiera och spara länken för att återkomma till aktuell vy