SwePub
Sök i SwePub databas

  Utökad sökning

Träfflista för sökning "WFRF:(Younger P.) srt2:(2010-2014)"

Sökning: WFRF:(Younger P.) > (2010-2014)

  • Resultat 1-2 av 2
Sortera/gruppera träfflistan
   
NumreringReferensOmslagsbildHitta
1.
  • Beven, Keith J., et al. (författare)
  • Struggling with Epistemic Uncertainties in Environmental Modelling of Natural Hazards
  • 2014
  • Ingår i: Vulnerability, Uncertainty, and Risk. - Reston, VA : American Society of Civil Engineers. - 9780784413609 ; , s. 13-22
  • Konferensbidrag (refereegranskat)abstract
    • Epistemic uncertainties create difficulties for the quantitative estimation of uncertainties associated with environmental models. The nature of the issues involved is discussed, particularly in how to assign likelihood values to models when the forcing data and evaluation data might both be subject to epistemic uncertainties. A case study of a rainfall-runoff model of the River Brue catchment is developed with the Generalised Likelihood Uncertainty Estimation (GLUE) methodology. Model evaluation is carried out using limits of acceptability set from considerations of the available data prior to running a model, while the errors associated with a model are treated non-parametrically for different parts of the hydrograph.
  •  
2.
  • Westerberg, Ida, et al. (författare)
  • Calibration of hydrological models using flow-duration curves
  • 2011
  • Ingår i: Hydrology and Earth System Sciences. - : Copernicus GmbH. - 1027-5606 .- 1607-7938. ; 15:7, s. 2205-2227
  • Tidskriftsartikel (refereegranskat)abstract
    • The degree of belief we have in predictions from hydrologic models will normally depend on how well they can reproduce observations. Calibrations with traditional performance measures, such as the Nash-Sutcliffe model efficiency, are challenged by problems including: (1) uncertain discharge data, (2) variable sensitivity of different performance measures to different flow magnitudes, (3) influence of unknown input/output errors and (4) inability to evaluate model performance when observation time periods for discharge and model input data do not overlap. This paper explores a calibration method using flow-duration curves (FDCs) to address these problems. The method focuses on reproducing the observed discharge frequency distribution rather than the exact hydrograph. It consists of applying limits of acceptability for selected evaluation points (EPs) on the observed uncertain FDC in the extended GLUE approach. Two ways of selecting the EPs were tested - based on equal intervals of discharge and of volume of water. The method was tested and compared to a calibration using the traditional model efficiency for the daily four-parameter WAS-MOD model in the Paso La Ceiba catchment in Honduras and for Dynamic TOPMODEL evaluated at an hourly time scale for the Brue catchment in Great Britain. The volume method of selecting EPs gave the best results in both catchments with better calibrated slow flow, recession and evaporation than the other criteria. Observed and simulated time series of uncertain discharges agreed better for this method both in calibration and prediction in both catchments. An advantage with the method is that the rejection criterion is based on an estimation of the uncertainty in discharge data and that the EPs of the FDC can be chosen to reflect the aims of the modelling application, e. g. using more/less EPs at high/low flows. While the method appears less sensitive to epistemic input/output errors than previous use of limits of acceptability applied directly to the time series of discharge, it still requires a reasonable representation of the distribution of inputs. Additional constraints might therefore be required in catchments subject to snow and where peak-flow timing at sub-daily time scales is of high importance. The results suggest that the calibration method can be useful when observation time periods for discharge and model input data do not overlap. The method could also be suitable for calibration to regional FDCs while taking uncertainties in the hydrological model and data into account.
  •  
Skapa referenser, mejla, bekava och länka
  • Resultat 1-2 av 2

Kungliga biblioteket hanterar dina personuppgifter i enlighet med EU:s dataskyddsförordning (2018), GDPR. Läs mer om hur det funkar här.
Så här hanterar KB dina uppgifter vid användning av denna tjänst.

 
pil uppåt Stäng

Kopiera och spara länken för att återkomma till aktuell vy