SwePub
Sök i SwePub databas

  Utökad sökning

Träfflista för sökning "WFRF:(Züttel Andreas) srt2:(2015-2019)"

Sökning: WFRF:(Züttel Andreas) > (2015-2019)

  • Resultat 1-2 av 2
Sortera/gruppera träfflistan
   
NumreringReferensOmslagsbildHitta
1.
  • Callini, Elsa, et al. (författare)
  • Nanostructured materials for solid-state hydrogen storage : A review of the achievement of COST Action MP1103
  • 2016
  • Ingår i: International journal of hydrogen energy. - : Elsevier. - 0360-3199 .- 1879-3487. ; 41:32, s. 14404-14428
  • Tidskriftsartikel (refereegranskat)abstract
    • In the framework of the European Cooperation in Science and Technology (COST) Action MP1103 Nanostructured Materials for Solid-State Hydrogen Storage were synthesized, characterized and modeled. This Action dealt with the state of the art of energy storage and set up a competitive and coordinated network capable to define new and unexplored ways for Solid State Hydrogen Storage by innovative and interdisciplinary research within the European Research Area. An important number of new compounds have been synthesized: metal hydrides, complex hydrides, metal halide ammines and amidoboranes. Tuning the structure from bulk to thin film, nanoparticles and nanoconfined composites improved the hydrogen sorption properties and opened the perspective to new technological applications. Direct imaging of the hydrogenation reactions and in situ measurements under operando conditions have been carried out in these studies. Computational screening methods allowed the prediction of suitable compounds for hydrogen storage and the modeling of the hydrogen sorption reactions on mono-, bi-, and three-dimensional systems. This manuscript presents a review of the main achievements of this Action.
  •  
2.
  • Shen, Yang, 1988- (författare)
  • Development of metal hydride surface structures for high power NiMH batteries : Also extended cycle-life and lead to more effective recycling methods
  • 2018
  • Doktorsavhandling (övrigt vetenskapligt/konstnärligt)abstract
    • By combining alkaline etching of hydrogen storage alloys or their hydrides with a controlled oxidation, it was possible to improve reaction kinetics and accelerate activation of MH-electrodes. Both AB5 and AB2 alloys were studied where A is mixtures of rare earth elements for AB5 alloys and titanium and/or vanadium, zirconium for AB2 alloys; nickel contributes the major part of B. With SEM and TEM studies the surface could be described as consisting of several phases where an interphase with active Ni-containing cluster protected the inner metallic hydrogen storage part of the powder particles. These catalytic Ni-clusters presumably lead to the fast activation and high discharge capacity of alloy.This interphase was observed to be stable enough to allow us to develop a method, where we could add pure oxygen to a NiMH battery pack in order to regenerate the amount of electrolyte that was lost during long time cycling of the battery. Meanwhile, the method will rebalance the electrodes mitigating excessive pressures during over charge. Therefore, the internal resistance of cells can be reduced and cycle life will increase.It was also shown that the stable interphase could survive a mild ball milling or sonication which enabled us to upcycle material from spent NiMH batteries into a better working MH-electrodes with improved kinetics and activation properties. Reuse of ball-milled or sonicated material could serve as a simple recycling alternative to energy-demanding metallurgical smelting methods and chemical consuming hydrometallurgical recycling processes, where the possibilities of up-scaling further favour the less complex mechanical treatments. The stable but catalytic interphase protecting the inner particles indicates that the MH-electrode material may perform better in its second life in a new NiMH battery.
  •  
Skapa referenser, mejla, bekava och länka
  • Resultat 1-2 av 2

Kungliga biblioteket hanterar dina personuppgifter i enlighet med EU:s dataskyddsförordning (2018), GDPR. Läs mer om hur det funkar här.
Så här hanterar KB dina uppgifter vid användning av denna tjänst.

 
pil uppåt Stäng

Kopiera och spara länken för att återkomma till aktuell vy