SwePub
Sök i SwePub databas

  Utökad sökning

Träfflista för sökning "WFRF:(Zapol Warren M.) srt2:(2019)"

Sökning: WFRF:(Zapol Warren M.) > (2019)

  • Resultat 1-2 av 2
Sortera/gruppera träfflistan
   
NumreringReferensOmslagsbildHitta
1.
  • Malhotra, Rajeev, et al. (författare)
  • HDAC9 is implicated in atherosclerotic aortic calcification and affects vascular smooth muscle cell phenotype
  • 2019
  • Ingår i: Nature Genetics. - : Springer Science and Business Media LLC. - 1061-4036 .- 1546-1718. ; 51:11, s. 1580-
  • Tidskriftsartikel (refereegranskat)abstract
    • Aortic calcification is an important independent predictor of future cardiovascular events. We performed a genome-wide association meta-analysis to determine SNPs associated with the extent of abdominal aortic calcification (n = 9,417) or descending thoracic aortic calcification (n = 8,422). Two genetic loci, HDAC9 and RAP1GAP, were associated with abdominal aortic calcification at a genome-wide level (P < 5.0 × 10−8). No SNPs were associated with thoracic aortic calcification at the genome-wide threshold. Increased expression of HDAC9 in human aortic smooth muscle cells promoted calcification and reduced contractility, while inhibition of HDAC9 in human aortic smooth muscle cells inhibited calcification and enhanced cell contractility. In matrix Gla protein–deficient mice, a model of human vascular calcification, mice lacking HDAC9 had a 40% reduction in aortic calcification and improved survival. This translational genomic study identifies the first genetic risk locus associated with calcification of the abdominal aorta and describes a previously unknown role for HDAC9 in the development of vascular calcification.
  •  
2.
  • Hindle, Allyson G., et al. (författare)
  • Low guanylyl cyclase activity in Weddell seals : implications for peripheral vasoconstriction and perfusion of the brain during diving
  • 2019
  • Ingår i: American Journal of Physiology. Regulatory Integrative and Comparative Physiology. - : AMER PHYSIOLOGICAL SOC. - 0363-6119 .- 1522-1490. ; 316:6, s. R704-R715
  • Tidskriftsartikel (refereegranskat)abstract
    • Nitric oxide (NO) is a potent vasodilator, which improves perfusion and oxygen delivery during tissue hypoxia in terrestrial animals. The vertebrate dive response involves vasoconstriction in select tissues. which persists despite profound hypoxia. Using tissues collected from Weddell seals at necropsy, we investigated whether vasoconstriction is aided by downregulation of local hypoxia signaling mechanisms. We focused on NO-soluble guanylyl cyclasc (GC)-cGMP signaling, a well-known vasodilatory transduction pathway. Seals have a lower GC protein abundance. activity, and capacity to respond to NO stimulation than do terrestrial mammals. In seal lung homogenates, GC produced less cGMP (20.1 +/- 3.7 pmol.mg protein(-1).min(-1)) than the lungs of dogs (-80 +/- 144 pmol.mg protein(-1).min(-1) less than seals), sheep (-472 +/- 96), rats (-664 +/- 104) or mice ( -1,160 +/- 104, P < 0.0001). Amino acid sequences of the GC enzyme alpha-subunits differed between seals and terrestrial mammals, potentially affecting their structure and function. Vasoconstriction in diving Weddell seals is not consistent across tissues; perfusion is maintained in the brain and heart but decreased in other organs such as the kidney. A NO donor increased median GC activity 49.5-fold in the seal brain but only 27.4-fold in the kidney. consistent with the priority of cerebral perfusion during diving. Nos3 expression was high in the seal brain, which could improve NO production and vasodilatory potential. Conversely, Pde5a expression was high in the seal renal artery, which may increase cGMP breakdown and vasoconstriction in the kidney. Taken together, the results of this study suggest that alterations in the NO-cGMP pathway facilitate the diving response.
  •  
Skapa referenser, mejla, bekava och länka
  • Resultat 1-2 av 2

Kungliga biblioteket hanterar dina personuppgifter i enlighet med EU:s dataskyddsförordning (2018), GDPR. Läs mer om hur det funkar här.
Så här hanterar KB dina uppgifter vid användning av denna tjänst.

 
pil uppåt Stäng

Kopiera och spara länken för att återkomma till aktuell vy