SwePub
Sök i SwePub databas

  Utökad sökning

Träfflista för sökning "WFRF:(Zepernick Hans Jürgen) srt2:(2020-2022)"

Sökning: WFRF:(Zepernick Hans Jürgen) > (2020-2022)

  • Resultat 1-3 av 3
Sortera/gruppera träfflistan
   
NumreringReferensOmslagsbildHitta
1.
  • Navarro, Diego (författare)
  • Biofeedback Interaction : Applying Physiological Methods to Entertainment Video Games
  • 2020
  • Licentiatavhandling (övrigt vetenskapligt/konstnärligt)abstract
    • Biofeedback interaction offers interesting opportunities for video games since it allows player physiological information to be used in novel interaction techniques. Despite several contributions in the area, biofeedback interaction faces a set of challenges relating to its design and implementation. First, it has mainly been used as a method to replace more traditional interaction devices, such as gamepads, mice or keyboards. Also, few of the previous interaction techniques have made an essential use of physiological data: exploring possibilities that could only be developed by involving physiological inputs.This dissertation explores how different physiological methods, such as electroencephalography, eye tracking, electrocardiography, electrodermal activity, or electromyography, could be used in the design and development of natural user interaction techniques that might be applied to entertainment video games, highlighting technical details for the appropriate use of physiological signals. The research also discusses interaction design principles from a human-computer interaction perspective, evaluates several novel biofeedback interaction techniques with a set of user studies, and proposes ethical considerations for the appropriate exposure to virtual reality and physiological sensor technology.Results show that the use of biofeedback inputs in novel interaction techniques, vary in complexity and functionality depending on the type of measurements used. They also showed that biofeedback interaction can positively affect player experience since it allows games and virtual reality applications to synchronize with player physiology, making of playing games a personalized experience. Results highlighted that biofeedback interaction can significantly affect player performance, being influenced by the interaction complexity and the reliability of the sensor technology used.
  •  
2.
  • Tran, Dang Ninh (författare)
  • LSB Data Hiding in 360o Videos
  • 2022
  • Doktorsavhandling (övrigt vetenskapligt/konstnärligt)abstract
    • Modern telecommunication systems have seen an increased demand on delivering new types of digital media such as extended reality. The currently rolled out fifth generation mobile networks are expected to support virtual reality, augmented reality, and other immersive media. On the other hand, securing communication to prevent access from adversaries and hiding secret information have become an integral part of digital communications. In particular, steganography is a class of data hiding that provides covert communication between two parties such that the information exchange cannot be observed by an attacker. Because the human auditory system and human visual system are relatively insensitive to small changes in digital media, hiding secret information in digital media has increasingly been used. This thesis focuses on data hiding in 360o videos which offer large resolutions that can be used for hiding secret data. To keep the computational load of data hiding low, least significant bit (LSB) data hiding methods are considered and their performance is assessed in terms of capacity and imperceptibility. The proposed LSB data hiding methods account for the human viewing behavior of watching 360o videos on head-mounted displays (HMDs).This thesis is divided into an introduction part and a research part based on four peer-reviewed publications. The introduction provides fundamentals of data hiding, terminologies used in data hiding, LSB data hiding concepts, and performance measures used to assess data hiding methods. The first paper in the research part provides a survey on LSB data hiding in digital audio, images, videos, and three-dimensional (3D) media. The survey shows the tremendous potential of LSB data hiding in digital media and may assist in developing novel applications based on suitable performance trade-offs between data hiding attributes. It also reveals that LSB data hiding in 3D media such as 360o videos is not as developed as for conventional digital media. The second paper proposes an LSB data hiding method for 360o videos which takes into account that humans pay more attention to the equator region compared to the poles when viewing 360o videos on an HMD. The third paper presents a novel viewing direction based LSB data hiding method for 360o videos. The distributions of viewing direction frequency for latitude and longitude are used to control the amount of secret data to be hidden at the latitude, longitude, or both latitude and longitude of 360o  videos. Analytical expressions for the capacity offered by this method are derived and imperceptibility is assessed through fidelity and quality metrics. The fourth paper proposes a viewing direction weighted bit plane LSB data hiding method for 360o videos that uses normalized Gaussian mixture models to control the amount of secret data and the number of bit planes used for data hiding in the latitude and longitude.
  •  
3.
  • Tran, Dang Ninh, 1987-, et al. (författare)
  • LSB Data Hiding in Digital Media : A Survey
  • 2022
  • Ingår i: EAI Endorsed Transactions on Industrial Networks and Intelligent Systems. - : European Alliance for Innovation (EAI). - 2410-0218. ; , s. 1-50
  • Forskningsöversikt (refereegranskat)abstract
    • Data hiding or information hiding is a prominent class of information security that aims at reliably conveying secret data embedded in a cover object over a covert channel. Digital media such as audio, image, video, and three-dimensional (3D) media can act as cover objects to carry such secret data. Digital media security has acquired tremendous significance in recent years and will be even more important with the development and delivery of new digital media over digital communication networks. In particular, least significant bit (LSB) data hiding is easy to implement and to combine with other hiding techniques, offers high embedding capacity for data, can resist steganalysis and several types of attacks, and is well suited for real-time applications. This article provides a comprehensive survey on LSB data hiding in digital media. The fundamental concepts and terminologies used in data hiding are reviewed along with a general data hiding model. The five attributes of data hiding, i.e., capacity, imperceptibility, robustness, detectability, and security, and the related performance metrics used in this survey to compare the characteristics of the different LSB data hiding methods are discussed. Given the classification of data hiding methods with respect to audio, image, video, and 3D media, a comprehensive survey of LSB data hiding for each of these four digital media is provided. In particular, landmark studies, state-of-the-art approaches, and applications of LSB data hiding are described for each of the four digital media. Their performance is compared with respect to the data hiding attributes which illustrates benefits and drawbacks of the reviewed LSB data hiding methods. The article concludes with summarizing main findings and suggesting directions for future research. This survey will be helpful for researchers and practitioners to keep abreast about the potential of LSB data hiding in digital media and to develop novel applications based on suitable performance trade-offs between data hiding attributes.
  •  
Skapa referenser, mejla, bekava och länka
  • Resultat 1-3 av 3

Kungliga biblioteket hanterar dina personuppgifter i enlighet med EU:s dataskyddsförordning (2018), GDPR. Läs mer om hur det funkar här.
Så här hanterar KB dina uppgifter vid användning av denna tjänst.

 
pil uppåt Stäng

Kopiera och spara länken för att återkomma till aktuell vy